Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Breast milk plays an important role in preventing and remission various acute and chronic neonatal diseases. However, the mechanisms through which breast milk performs these effects are still unclear. Recently, research has shown that breast milk contains previously undiscovered cells, called breast milk stem cells (BMSCs), which have the potential for multiple differentiation. These cells have been shown to be expressed in multiple organs and systems of infants after ingestion. This study found that newborns who received BMSCs required a shorter treatment duration and had a better prognosis than those who did not receive BMSCs. This suggests that BMSCs may be able to treat a variety of neonatal diseases, and breast milk may play a role in preventing and mitigating neonatal diseases through BMSCs. In this paper, we summarized the research progress on BMSCs and their therapeutic effects on organs, the possible ways in which BMSCs enter different organs and tissues of the human body, and detailed the types of diseases, modes of action, and mechanisms that BMSCs may play a role in. We aim to pave the way for further clinical and preclinical research on BMSCs, as well as the treatment of neonatal diseases with BMSCs, to provide possible new therapeutic means for treating neonatal diseases and a variety of other diseases.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X304788240526190336
2024-06-03
2025-11-04
Loading full text...

Full text loading...

References

  1. WuX.P. GuC.L. HanS.P. DengX.Y. ChenX.Q. WangH.Y. LiS.S. WangJ. ZhouQ. HouW.W. GaoY. HanL.R. LiuH.J. YuZ.B. WangZ.Q. LiN. LiH.X. ZhouJ.J. ChenS.S. JiangS.Y. LuX.X. PanZ.J. ChenX.H. A multicenter retrospective study on survival rate and complications of very preterm infants.Zhongguo Dang Dai Er Ke Za Zhi202123881482034511171
    [Google Scholar]
  2. AndrewsR.E. CoeK.L. Clinical Presentation and multifactorial pathogenesis of necrotizing enterocolitis in the preterm infant.Adv Neonat Care2021215349355
    [Google Scholar]
  3. PearlmanS.A. Advancements in neonatology through quality improvement.J. Perinatol.202242101277128210.1038/s41372‑022‑01383‑935368024
    [Google Scholar]
  4. Abd AllahS.H. ShalabyS.M. El-ShalA.S. El NabtetyS.M. KhamisT. Abd El RhmanS.A. GharebM.A. KelaniH.M. Breast milk MSCs: An explanation of tissue growth and maturation of offspring.IUBMB Life2016681293594210.1002/iub.157327753198
    [Google Scholar]
  5. AteşU. Let’s familiarize ourselves with the stem cell.Istanbul Bilim Uni. Florence Nightingale Transplant. J.201611192810.5606/fng.transplantasyon.2016.004
    [Google Scholar]
  6. CarrL.E. VirmaniM.D. RosaF. MunblitD. MatazelK.S. ElolimyA.A. YeruvaL. Role of human milk bioactives on infants’ gut and immune health.Front. Immunol.20211260408010.3389/fimmu.2021.60408033643310
    [Google Scholar]
  7. QuitadamoPA PalumboG CiantiL The revolution of breast milk: The multiple role of human milk banking between evidence and experience-a narrative review.Int J Pediatr.20212021668251610.1155/2021/6682516
    [Google Scholar]
  8. LyonsK.E. RyanC.A. DempseyE.M. RossR.P. StantonC. Breast milk, a source of beneficial microbes and associated benefits for infant health.Nutrients2020124103910.3390/nu1204103932283875
    [Google Scholar]
  9. NuzziG. TrambustiI. Di CiccoM.E. PeroniD.G. Breast milk: More than just nutrition!Minerva Pediatr.202173211111410.23736/S2724‑5276.21.06223‑X33880902
    [Google Scholar]
  10. BardanzelluF. PeroniD.G. FanosV. Human breast milk: Bioactive components, from stem cells to health outcomes.Curr. Nutr. Rep.20209111310.1007/s13668‑020‑00303‑731927722
    [Google Scholar]
  11. AydınM.Ş. YiğitE.N. VatandaşlarE. ErdoğanE. ÖztürkG. Transfer and integration of breast milk stem cells to the brain of suckling pups.Sci. Rep.2018811428910.1038/s41598‑018‑32715‑530250150
    [Google Scholar]
  12. GhafarzadehM. NamdariP. TarhaniM. TarhaniF. A review of application of stem cell therapy in the management of congenital heart disease.J. Matern. Fetal Neonatal Med.20203391607161510.1080/14767058.2018.152082930185081
    [Google Scholar]
  13. Borhani-HaghighiM. NavidS. MohamadiY. The therapeutic potential of conditioned medium from human breast milk stem cells in treating spinal cord injury.Asian Spine J.202014213113810.31616/asj.2019.002631711062
    [Google Scholar]
  14. WorkuM.G. Pluripotent and multipotent stem cells and current therapeutic applications: Review.Stem Cells Cloning2021143710.2147/SCCAA.S30488733880040
    [Google Scholar]
  15. Nakamura-IshizuA. AhmadS.A.I. SudaT. Bone marrow transplantation dynamics: When progenitor expansion prevails.Trends Cell Biol.2020301183583610.1016/j.tcb.2020.08.00632921525
    [Google Scholar]
  16. SzabolcsP. Hemophagocytic syndrome with graft-versus-host disease after liver transplantation: The bone marrow as a not so quiet battlefield?Am. J. Transplant.202121123823382410.1111/ajt.1681634453381
    [Google Scholar]
  17. FleischhauerK. Improved accessibility of optimally matched stem cell donors.Transplant. Cell. Ther.202329421321410.1016/j.jtct.2023.03.00436966010
    [Google Scholar]
  18. BriereC.E. McGrathJ.M. JensenT. MatsonA. FinckC. Breast milk stem cells.Adv. Neonatal Care201616641041910.1097/ANC.000000000000033827749687
    [Google Scholar]
  19. CreganM.D. FanY. AppelbeeA. BrownM.L. KlopcicB. KoppenJ. MitoulasL.R. PiperK.M.E. ChoolaniM.A. ChongY.S. HartmannP.E. Identification of nestin-positive putative mammary stem cells in human breastmilk.Cell Tissue Res.2007329112913610.1007/s00441‑007‑0390‑x17440749
    [Google Scholar]
  20. FanY. ChongY.S. ChoolaniM.A. CreganM.D. ChanJ.K.Y. Unravelling the mystery of stem/progenitor cells in human breast milk.PLoS One2010512e1442110.1371/journal.pone.001442121203434
    [Google Scholar]
  21. GleesonJ.P. ChaudharyN. FeinK.C. DoerflerR. Hredzak-ShowalterP. WhiteheadK.A. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations.Sci. Adv.2022826eabm686510.1126/sciadv.abm686535767604
    [Google Scholar]
  22. HuX. ZhangR. LiangH. AnJ. YangY. HuoJ. ChenZ. QuanW. JiangL. LiC. LiJ. LiF. XuY. ZhuX. Comparison and investigation of exosomes from human amniotic fluid stem cells and human breast milk in alleviating neonatal necrotizing enterocolitis.Stem Cell Rev. Rep.202319375476610.1007/s12015‑022‑10470‑536385400
    [Google Scholar]
  23. KakulasF. GeddesD.T. HartmannP.E. Breastmilk is unlikely to be a source of mesenchymal stem cells.Breastfeed. Med.201611315015110.1089/bfm.2016.002126959399
    [Google Scholar]
  24. HassiotouF. HepworthA.R. BeltranA.S. MathewsM.M. StuebeA.M. HartmannP.E. FilgueiraL. BlancafortP. Expression of the pluripotency transcription factor OCT4 in the normal and aberrant mammary gland.Front. Oncol.201337910.3389/fonc.2013.0007923596564
    [Google Scholar]
  25. HemmatS. LiebermanD. MostS. An introduction to stem cell biology.Facial Plast. Surg.201026534334910.1055/s‑0030‑126501520853224
    [Google Scholar]
  26. HockA. MiyakeH. LiB. LeeC. ErminiL. KoikeY. ChenY. MäättänenP. ZaniA. PierroA. Breast milk-derived exosomes promote intestinal epithelial cell growth.J. Pediatr. Surg.201752575575910.1016/j.jpedsurg.2017.01.03228188035
    [Google Scholar]
  27. GoG. JeonJ. LeeG. LeeJ.H. LeeS.H. Bovine milk extracellular vesicles induce the proliferation and differentiation of osteoblasts and promote osteogenesis in rats.J. Food Biochem.2021454e1370510.1111/jfbc.1370533748986
    [Google Scholar]
  28. PatkiS. KadamS. ChandraV. BhondeR. Human breast milk is a rich source of multipotent mesenchymal stem cells.Hum. Cell2010232354010.1111/j.1749‑0774.2010.00083.x20712706
    [Google Scholar]
  29. SaniM. HosseiniS.M. SalmannejadM. AleahmadF. EbrahimiS. JahanshahiS. Talaei-KhozaniT. Origins of the breast milk-derived cells; an endeavor to find the cell sources.Cell Biol. Int.201539561161810.1002/cbin.1043225572907
    [Google Scholar]
  30. GoudarziN. ShabaniR. EbrahimiM. BaghestaniA. DehdashtianE. VahabzadehG. SoleimaniM. MoradiF. KatebiM. Comparative phenotypic characterization of human colostrum and breast milk-derived stem cells.Hum. Cell202033230831710.1007/s13577‑019‑00320‑x31975030
    [Google Scholar]
  31. LiewL.C. KatsudaT. GailhousteL. NakagamaH. OchiyaT. Mesenchymal stem cell-derived extracellular vesicles: A glimmer of hope in treating Alzheimer’s disease.Int. Immunol.2017291111910.1093/intimm/dxx00228184439
    [Google Scholar]
  32. KhamisT. AlsemehA.E. AlanaziA. EltaweelA.M. Abdel-GhanyH.M. HendawyD.M. AbdelkhalekA. SaidM.A. AwadH.H. IbrahimB.H. MekawyD.M. PascuC. FlorinC. ArishaA.H. Breast milk mesenchymal stem cells and/or derived exosomes mitigated adenine-induced nephropathy via modulating renal autophagy and fibrotic signaling pathways and their epigenetic regulations.Pharmaceutics2023158214910.3390/pharmaceutics1508214937631363
    [Google Scholar]
  33. KellerT. KörberF. OberthuerA. SchafmeyerL. MehlerK. KuhrK. KribsA. Intranasal breast milk for premature infants with severe intraventricular hemorrhage—an observation.Eur. J. Pediatr.2019178219920610.1007/s00431‑018‑3279‑730386923
    [Google Scholar]
  34. KellerT. WengenrothL. SmorraD. ProbstK. KurianL. KribsA. BrachvogelB. Novel DRAQ5™/SYTOX® blue based flow cytometric strategy to identify and characterize stem cells in human breast milk.Cytometry B Clin. Cytom.201996648048910.1002/cyto.b.2174830479054
    [Google Scholar]
  35. KersinS.G. ÖzekE. Breast milk stem cells: Are they magic bullets in neonatology?Turk. Pediatri Ars.202156318719110.5152/TurkArchPediatr.2021.2100634104907
    [Google Scholar]
  36. KhamisT. AbdelalimA.F. AbdallahS.H. SaeedA.A. EdressN.M. ArishaA.H. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats.Biochim. Biophys. Acta Mol. Basis Dis.20201866116557710.1016/j.bbadis.2019.16557731672553
    [Google Scholar]
  37. KimH. JangY. KimE.H. JangH. ChoH. HanG. SongH.K. KimS.H. YangY. Potential of colostrum-derived exosomes for promoting hair regeneration through the transition from telogen to anagen phase.Front. Cell Dev. Biol.20221081520510.3389/fcell.2022.81520535359449
    [Google Scholar]
  38. LangaS. Maldonado-BarragánA. DelgadoS. MartínR. MartínV. JiménezE. Ruíz-BarbaJ.L. MayoB. ConnorR.I. SuárezJ.E. RodríguezJ.M. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: From genotype to phenotype.Appl. Microbiol. Biotechnol.20129451279128710.1007/s00253‑012‑4032‑122526789
    [Google Scholar]
  39. LiB. HockA. WuR.Y. MinichA. BottsS.R. LeeC. AntouniansL. MiyakeH. KoikeY. ChenY. ZaniA. ShermanP.M. PierroA. Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis.PLoS One2019141e021143110.1371/journal.pone.021143130699187
    [Google Scholar]
  40. HuangY. GuoF.Z. DaiS. HuH.Y. FuS.Y. LiuJ.W. LuoF. Clinical insights into cisplatin-induced arrhythmia in a patient with locally advanced non-small cell lung cancer: A case report.Eur Rev Med Pharmaco202226161035049014
    [Google Scholar]
  41. Başak TürkmenN. Aşkin ÖzekD. TaşlidereA. Çi̇ftçi̇O. SaralÖ. GülC.C. Protective role of diospyros lotus/l. in cisplatin-induced cardiotoxicity: Cardiac damage and oxidative stress in rats.Turkish J Pharmaceut Sci202219213213710.4274/tjps.galenos.2021.8455535509232
    [Google Scholar]
  42. NageebM.M. SaadawyS.F. AttiaS.H. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway.Sci. Rep.20221211755410.1038/s41598‑022‑22095‑236266413
    [Google Scholar]
  43. HamidO.I.A. DomoukyA.M. El-fakharanyY.M. Molecular evidence of the amelioration of toluene induced encephalopathy by human breast milk mesenchymal stem cells.Sci. Rep.2022121919410.1038/s41598‑022‑13173‑635654991
    [Google Scholar]
  44. PisanoC. GalleyJ. ElbahrawyM. WangY. FarrellA. BrigstockD. BesnerG.E. Human breast milk-derived extracellular vesicles in the protection against experimental necrotizing enterocolitis.J. Pediatr. Surg.2020551545810.1016/j.jpedsurg.2019.09.05231685268
    [Google Scholar]
  45. LiS. ZhangL. ZhouQ. JiangS. YangY. CaoY. Characterization of stem cells and immune cells in preterm and term mother’s milk.J. Hum. Lact.201935352853410.1177/089033441983898631026180
    [Google Scholar]
  46. NinkinaN. KukharskyM.S. HewittM.V. LysikovaE.A. SkuratovskaL.N. DeykinA.V. BuchmanV.L. Stem cells in human breast milk.Hum. Cell201932322323010.1007/s13577‑019‑00251‑730972555
    [Google Scholar]
  47. ShinW. RosinN.L. SparksH. SinhaS. RahmaniW. SharmaN. WorkentineM. AbbasiS. LabitE. StrattonJ.A. BiernaskieJ. Dysfunction of hair follicle mesenchymal progenitors contributes to age-associated hair loss.Dev. Cell2020532185198.e710.1016/j.devcel.2020.03.01932315612
    [Google Scholar]
  48. Krefft-TrzcinieckaK. PiętowskaZ. NowickaD. SzepietowskiJ.C. Human stem cell use in Androgenetic Alopecia: A systematic review.Cells202312695110.3390/cells1206095136980291
    [Google Scholar]
  49. Rahmani-MoghadamE. ZarrinV. MahmoodzadehA. OwrangM. Talaei-KhozaniT. Comparison of the characteristics of breast milk-derived stem cells with the stem cells derived from the other sources: A comparative review.Curr. Stem Cell Res. Ther.2022171719010.2174/1574888X1666621062212530934161214
    [Google Scholar]
  50. TangC. LuC. JiX. MaL. ZhouQ. XiongM. ZhouW. Generation of two induced pluripotent stem cell (iPSC) lines from human breast milk using episomal reprogramming system.Stem Cell Res. (Amst.)20193910151110.1016/j.scr.2019.10151131404746
    [Google Scholar]
  51. TianT. CaoL. HeC. YeQ. LiangR. YouW. ZhangH. WuJ. YeJ. TannousB.A. GaoJ. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia.Theranostics202111136507652110.7150/thno.5636733995671
    [Google Scholar]
  52. TwiggerA.J. HepworthA.R. Tat LaiC. ChetwyndE. StuebeA.M. BlancafortP. HartmannP.E. GeddesD.T. KakulasF. Gene expression in breastmilk cells is associated with maternal and infant characteristics.Sci. Rep.2015511293310.1038/srep1293326255679
    [Google Scholar]
  53. Valverde-VillegasJ.M. DurandM. BedinA.S. RutagweraD. KankasaC. TuaillonE. NagotN. Vande PerreP. MolèsJ.P. Large stem/progenitor-like cell subsets can also be identified in the CD45 - and CD45 +/High populations in early human milk.J. Hum. Lact.202036230330910.1177/089033441988531531815589
    [Google Scholar]
  54. WeissmanI.L. Translating stem and progenitor cell biology to the clinic: Barriers and opportunities.Science200028754571442144610.1126/science.287.5457.144210688785
    [Google Scholar]
  55. Witkowska-ZimnyM. Kaminska-El-HassanE. Cells of human breast milk.Cell. Mol. Biol. Lett.20172211110.1186/s11658‑017‑0042‑428717367
    [Google Scholar]
  56. XieM.Y. HouL.J. SunJ.J. ZengB. XiQ.Y. LuoJ.Y. ChenT. ZhangY.L. Porcine milk exosome MiRNAs attenuate LPS-Induced apoptosis through inhibiting TLR4/NF-κB and p53 pathways in intestinal epithelial cells.J. Agric. Food Chem.201967349477949110.1021/acs.jafc.9b0292531429552
    [Google Scholar]
  57. ThébaudB. Stem cell therapies for neonatal lung diseases: Are we there yet?Semin. Perinatol.202347315172410.1016/j.semperi.2023.15172436967368
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X304788240526190336
Loading
/content/journals/cscr/10.2174/011574888X304788240526190336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test