Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system and is a leading cause of disability in young adults. Most therapeutic strategies are based on immunosuppressant effects. However, none of the drugs showed complete remission and may result in serious adverse events such as infection. Mesenchymal stem cells (MSCs) have gained much attention and are considered a potential therapeutic strategy owing to their immunomodulatory effects and neuroprotective functions. Experimental autoimmune encephalomyelitis (EAE), a classical animal model for MS, is widely used to explore the efficacy and mechanism of MSC transplantation. This review summarises the therapeutic mechanism of MSCs in the treatment of EAE, including the effects on immune cells (T cells, B cells, dendritic cells, natural killer cells) and central nervous system-resident cells (astroglia, microglia, oligodendrocytes, neurons) as well as various strategies to improve the efficacy of MSCs in the treatment of EAE. Additionally, we discuss the clinical application of MSCs for MS patients as well as the challenges and prospects of MSC transplantation.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X305349240511125540
2024-05-20
2025-11-05
Loading full text...

Full text loading...

References

  1. DobsonR. GiovannoniG. Multiple sclerosis – a review.Eur. J. Neurol.2019261274010.1111/ene.1381930300457
    [Google Scholar]
  2. ThompsonA.J. BaranziniS.E. GeurtsJ. HemmerB. CiccarelliO. Multiple sclerosis.Lancet2018391101301622163610.1016/S0140‑6736(18)30481‑129576504
    [Google Scholar]
  3. OlssonT. BarcellosL.F. AlfredssonL. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis.Nat. Rev. Neurol.2017131253610.1038/nrneurol.2016.18727934854
    [Google Scholar]
  4. ConstantinescuC.S. FarooqiN. O’BrienK. GranB. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).Br. J. Pharmacol.201116441079110610.1111/j.1476‑5381.2011.01302.x21371012
    [Google Scholar]
  5. GlatignyS. BettelliE. Experimental Autoimmune Encephalomyelitis (EAE) as animal models of Multiple Sclerosis (MS).Cold Spring Harb. Perspect. Med.2018811a02897710.1101/cshperspect.a02897729311122
    [Google Scholar]
  6. VoetS. PrinzM. van LooG. Microglia in Central nervous system inflammation and multiple sclerosis pathology.Trends Mol. Med.201925211212310.1016/j.molmed.2018.11.00530578090
    [Google Scholar]
  7. GiovannoniF. QuintanaF.J. The role of astrocytes in CNS inflammation.Trends Immunol.202041980581910.1016/j.it.2020.07.00732800705
    [Google Scholar]
  8. ZhangH. PodojilJ.R. ChangJ. LuoX. MillerS.D. TGF-beta-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis.J. Immunol.2010184126629663610.4049/jimmunol.090404420483764
    [Google Scholar]
  9. MatsushitaT. YanabaK. BouazizJ.D. FujimotoM. TedderT.F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression.J. Clin. Invest.2008118103420343010.1172/JCI3603018802481
    [Google Scholar]
  10. WangL. LiZ. CiricB. SafaviF. ZhangG.X. RostamiA. Selective depletion of CD11c + CD11b + dendritic cells partially abrogates tolerogenic effects of intravenous MOG in murine EAE.Eur. J. Immunol.201646102454246610.1002/eji.20154627427338697
    [Google Scholar]
  11. JakimovskiD. KolbC. RamanathanM. ZivadinovR. Weinstock-GuttmanB. Interferon β for multiple sclerosis.Cold Spring Harb. Perspect. Med.2018811a03200310.1101/cshperspect.a03200329311124
    [Google Scholar]
  12. HauserS.L. CreeB.A.C. Treatment of multiple sclerosis: A review.Am. J. Med.20201331213801390.e210.1016/j.amjmed.2020.05.04932682869
    [Google Scholar]
  13. McGinleyM.P. GoldschmidtC.H. Rae-GrantA.D. Diagnosis and treatment of multiple sclerosis.JAMA2021325876577910.1001/jama.2020.2685833620411
    [Google Scholar]
  14. SongN. ScholtemeijerM. ShahK. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential.Trends Pharmacol. Sci.202041965366410.1016/j.tips.2020.06.00932709406
    [Google Scholar]
  15. GencB. BozanH.R. GencS. GencK. Stem Cell Therapy for Multiple Sclerosis.Adv. Exp. Med. Biol.2018108414517410.1007/5584_2018_24730039439
    [Google Scholar]
  16. LiJ. ZhangQ. WangW. LinF. WangS. ZhaoJ. Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential.J. Neurol.2021268114095410710.1007/s00415‑020‑10138‑532761505
    [Google Scholar]
  17. CofanoF. BoidoM. MonticelliM. ZengaF. DucatiA. VercelliA. GarbossaD. Mesenchymal stem cells for spinal cord injury: Current options, limitations, and future of cell therapy.Int. J. Mol. Sci.20192011269810.3390/ijms2011269831159345
    [Google Scholar]
  18. RiordanN.H. MoralesI. FernándezG. AllenN. FearnotN.E. LeckroneM.E. MarkovichD.J. MansfieldD. AvilaD. PatelA.N. KesariS. Paz RodriguezJ. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis.J. Transl. Med.20181615710.1186/s12967‑018‑1433‑729523171
    [Google Scholar]
  19. PetrouP. KassisI. LevinN. PaulF. BacknerY. BenolielT. OertelF.C. ScheelM. HallimiM. YaghmourN. HurT.B. GinzbergA. LevyY. AbramskyO. KarussisD. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis.Brain2020143123574358810.1093/brain/awaa33333253391
    [Google Scholar]
  20. Baecher-AllanC. KaskowB.J. WeinerH.L. Multiple Sclerosis: Mechanisms and Immunotherapy.Neuron201897474276810.1016/j.neuron.2018.01.02129470968
    [Google Scholar]
  21. ZamvilS. NelsonP. TrotterJ. MitchellD. KnoblerR. FritzR. SteinmanL. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination.Nature1985317603535535810.1038/317355a02413363
    [Google Scholar]
  22. FrischerJ.M. BramowS. Dal-BiancoA. LucchinettiC.F. RauschkaH. SchmidbauerM. LaursenH. SorensenP.S. LassmannH. The relation between inflammation and neurodegeneration in multiple sclerosis brains.Brain200913251175118910.1093/brain/awp07019339255
    [Google Scholar]
  23. TanakaY. ArimaY. HiguchiK. OhkiT. ElfekyM. OtaM. KamimuraD. MurakamiM. EAE induction by passive transfer of MOG-specific CD4+ T cells.Bio Protoc.2017713e237010.21769/BioProtoc.237034541112
    [Google Scholar]
  24. DurelliL. ContiL. ClericoM. BoselliD. ContessaG. RipellinoP. FerreroB. EidP. NovelliF. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-β.Ann. Neurol.200965549950910.1002/ana.2165219475668
    [Google Scholar]
  25. MurphyÁ.C. LalorS.J. LynchM.A. MillsK.H.G. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.Brain Behav. Immun.201024464165110.1016/j.bbi.2010.01.01420138983
    [Google Scholar]
  26. GuoJ. ZhaoC. WuF. TaoL. ZhangC. ZhaoD. YangS. JiangD. WangJ. SunY. LiZ. LiH. YangK. T follicular helper-like cells are involved in the pathogenesis of experimental autoimmune encephalomyelitis.Front. Immunol.2018994410.3389/fimmu.2018.0094429867938
    [Google Scholar]
  27. SchafflickD. XuC.A. HartlehnertM. ColeM. Schulte-MecklenbeckA. LautweinT. WolbertJ. HemingM. MeuthS.G. KuhlmannT. GrossC.C. WiendlH. YosefN. Meyer zu HorsteG. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis.Nat. Commun.202011124710.1038/s41467‑019‑14118‑w31937773
    [Google Scholar]
  28. DuffyM.M. RitterT. CeredigR. GriffinM.D. Mesenchymal stem cell effects on T-cell effector pathways.Stem Cell Res. Ther.2011243410.1186/scrt7521861858
    [Google Scholar]
  29. de FreitasC.L. PolonioC.M. BrandãoW.N. RossatoC. ZanluquiN.G. de OliveiraL.G. de OliveiraM.G. EvangelistaL.P. HalpernS. MalufM. CzresniaC.E. PerinP. de AlmeidaD.C. PeronJ.P.S. Human fallopian tube – derived mesenchymal stem cells inhibit experimental autoimmune encephalomyelitis by suppressing Th1/Th17 activation and migration to central nervous system.Stem Cell Rev. Rep.202218260962510.1007/s12015‑021‑10226‑734453694
    [Google Scholar]
  30. Manganeli PolonioC. Longo de FreitasC. Garcia de OliveiraM. RossatoC. Nogueira BrandãoW. Ghabdan ZanluquiN. Gomes de OliveiraL. Ayumi Nishiyama MimuraL. Braga Barros SilvaM. Lúcia Garcia CalichV. Gil NisenbaumM. HalpernS. EvangelistaL. MalufM. PerinP. Eduardo CzeresniaC. Schatzmann PeronJ.P. Murine endometrial-derived mesenchymal stem cells suppress experimental autoimmune encephalomyelitis depending on indoleamine-2,3-dioxygenase expression.Clin. Sci. (Lond.)202113591065108210.1042/CS2020154433960391
    [Google Scholar]
  31. LevyO. RothhammerV. MascanfroniI. TongZ. KuaiR. De BiasioM. WangQ. MajidT. PerraultC. YesteA. KenisonJ.E. SafaeeH. MusabeyezuJ. HeineltM. MiltonY. KuangH. LanH. SidersW. MultonM.C. RothblattJ. MassadehS. AlaameryM. AlhasanA.H. QuintanaF.J. KarpJ.M. A cell-based drug delivery platform for treating central nervous system inflammation.J. Mol. Med. (Berl.)202199566367110.1007/s00109‑020‑02003‑933398468
    [Google Scholar]
  32. NasriF. MohtasebiM.S. HashemiE. ZarrabiM. GholijaniN. SarvestaniE.K. Therapeutic efficacy of mesenchymal stem cells and mesenchymal stem cells-derived neural progenitors in experimental autoimmune encephalomyelitis.Int. J. Stem Cells2018111687710.15283/ijsc1705229699380
    [Google Scholar]
  33. Vega-LetterA.M. KurteM. Fernández-O’RyanC. Gauthier-AbeliukM. FuenzalidaP. Moya-UribeI. AltamiranoC. FigueroaF. IrarrázabalC. CarriónF. Differential TLR activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in EAE.Stem Cell Res. Ther.20167115010.1186/s13287‑016‑0402‑427724984
    [Google Scholar]
  34. JangE. JeongM. KimS. JangK. KangB.K. LeeD.Y. BaeS.C. KimK.S. YounJ. infusion of human bone marrow-derived mesenchymal stem cells alleviates autoimmune nephritis in a lupus model by suppressing follicular helper t-cell development.Cell Transplant.201625111510.3727/096368915X68817325975931
    [Google Scholar]
  35. ZhangZ. FengR. NiuL. HuangS. DengW. ShiB. YaoG. ChenW. TangX. GaoX. FengX. SunL. Human umbilical cord mesenchymal stem cells inhibit T follicular helper cell expansion through the activation of inos in lupus-prone B6.MRL- Fas lpr Mice.Cell Transplant.20172661031104210.3727/096368917X69466028105982
    [Google Scholar]
  36. AugelloA. TassoR. NegriniS.M. AmateisA. IndiveriF. CanceddaR. PennesiG. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway.Eur. J. Immunol.20053551482149010.1002/eji.20042540515827960
    [Google Scholar]
  37. ZhouX. LiuX. LiuL. HanC. XieZ. LiuX. XuY. LiF. BiJ. ZhengC. Transplantation of IFN-γ primed hUCMSCs significantly improved outcomes of experimental autoimmune encephalomyelitis in a mouse model.Neurochem. Res.20204571510151710.1007/s11064‑020‑03009‑y32172400
    [Google Scholar]
  38. HeidariF. RamezaniA. ErfaniN. RazmkhahM. Indoleamine 2, 3-dioxygenase: A professional immunomodulator and its potential functions in immune related diseases.Int. Rev. Immunol.202241334636310.1080/08830185.2020.183617633118843
    [Google Scholar]
  39. DondersR. VanheusdenM. BogieJ.F.J. RavanidisS. ThewissenK. StinissenP. GyselaersW. HendriksJ.J.A. HellingsN. Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis.Cell Transplant.201524102077209810.3727/096368914X68510425310756
    [Google Scholar]
  40. KeF. ZhangL. LiuZ. YanS. XuZ. BaiJ. ZhuH. LouF. CaiW. SunY. GaoY. WangH. WangH. Soluble tumor necrosis factor receptor 1 released by skin-derived mesenchymal stem cells is critical for inhibiting Th17 cell differentiation.Stem Cells Transl. Med.20165330131310.5966/sctm.2015‑017926819253
    [Google Scholar]
  41. RafeiM. CampeauP.M. Aguilar-MahechaA. BuchananM. WilliamsP. BirmanE. YuanS. YoungY.K. BoivinM.N. FornerK. BasikM. GalipeauJ. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner.J. Immunol.2009182105994600210.4049/jimmunol.080396219414750
    [Google Scholar]
  42. Del PapaB. SportolettiP. CecchiniD. RosatiE. BalucaniC. BaldoniS. FettucciariK. MarconiP. MartelliM.F. FalzettiF. Di IanniM. Notch1 modulates mesenchymal stem cells mediated regulatory T -cell induction.Eur. J. Immunol.201343118218710.1002/eji.20124264323161436
    [Google Scholar]
  43. YooH.S. LeeK. NaK. ZhangY.X. LimH.J. YiT. SongS.U. JeonM.S. Mesenchymal stromal cells inhibit CD25 expression via the mTOR pathway to potentiate T-cell suppression.Cell Death Dis.201782e263210.1038/cddis.2017.4528230853
    [Google Scholar]
  44. Bar-OrA. FawazL. FanB. DarlingtonP.J. RiegerA. GhorayebC. CalabresiP.A. WaubantE. HauserS.L. ZhangJ. SmithC.H. Abnormal B-cell cytokine responses a trigger of T-cell–mediated disease in MS?Ann. Neurol.201067445246110.1002/ana.2193920437580
    [Google Scholar]
  45. RastogiI. JeonD. MosemanJ.E. MuralidharA. PotluriH.K. McNeelD.G. Role of B cells as antigen presenting cells.Front. Immunol.20221395493610.3389/fimmu.2022.95493636159874
    [Google Scholar]
  46. HauserS.L. WaubantE. ArnoldD.L. VollmerT. AntelJ. FoxR.J. Bar-OrA. PanzaraM. SarkarN. AgarwalS. Langer-GouldA. SmithC.H. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis.N. Engl. J. Med.2008358767668810.1056/NEJMoa070638318272891
    [Google Scholar]
  47. AgiusM.A. Klodowska-DudaG. MaciejowskiM. PotemkowskiA. LiJ. PatraK. WesleyJ. MadaniS. BarronG. KatzE. FlorA. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: Results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study.Mult. Scler.201925223524510.1177/135245851774064129143550
    [Google Scholar]
  48. TaberaS. Pérez-SimónJ.A. Díez-CampeloM. Sánchez-AbarcaL.I. BlancoB. LópezA. BenitoA. OcioE. Sánchez-GuijoF.M. CañizoC. San MiguelJ.F. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes.Haematologica20089391301130910.3324/haematol.1285718641017
    [Google Scholar]
  49. CatalánD. MansillaM.A. FerrierA. SotoL. OleinikaK. AguillónJ.C. AravenaO. Immunosuppressive mechanisms of regulatory B cells.Front. Immunol.20211261179510.3389/fimmu.2021.61179533995344
    [Google Scholar]
  50. LiH. DengY. LiangJ. HuangF. QiuW. ZhangM. LongY. HuX. LuZ. LiuW. ZhengS.G. Mesenchymal stromal cells attenuate multiple sclerosis via IDO-dependent increasing the suppressive proportion of CD5+ IL-10+ B cells.Am. J. Transl. Res.20191195673568831632539
    [Google Scholar]
  51. GuoY. ChanK.H. LaiW.H. SiuC.W. KwanS.C. TseH.F. Wing-Lok HoP. Wing-Man HoJ. Human mesenchymal stem cells upregulate CD1dCD5(+) regulatory B cells in experimental autoimmune encephalomyelitis.Neuroimmunomodulation201320529430310.1159/00035145023899693
    [Google Scholar]
  52. ChenR. CaoY. TianY. GuY. LuH. ZhangS. XuH. SuZ. PGE2 ameliorated viral myocarditis development and promoted IL-10-producing regulatory B cell expansion via MAPKs/AKT-AP1 axis or AhR signaling.Cell. Immunol.202034710402510.1016/j.cellimm.2019.10402531837749
    [Google Scholar]
  53. VogelA. MartinK. SoukupK. HalfmannA. KerndlM. BrunnerJ.S. HofmannM. OberbichlerL. KorosecA. KuttkeM. DatlerH. KielerM. MusiejovskyL. DohnalA. SharifO. SchabbauerG. JAK1 signaling in dendritic cells promotes peripheral tolerance in autoimmunity through PD-L1-mediated regulatory T cell induction.Cell Rep.202238811042010.1016/j.celrep.2022.11042035196494
    [Google Scholar]
  54. ZhouF. LaurettiE. di MecoA. CiricB. GonnellaP. ZhangG.X. RostamiA. Intravenous transfer of apoptotic cell-treated dendritic cells leads to immune tolerance by blocking Th17 cell activity.Immunobiology201321881069107610.1016/j.imbio.2013.02.00323587571
    [Google Scholar]
  55. LuP. CaoY. WangM. ZhengP. HouJ. ZhuC. HuJ. Mature dendritic cells cause Th17/Treg imbalance by secreting TGF-β1 and IL-6 in the pathogenesis of experimental autoimmune encephalomyelitis.Cent. Eur. J. Immunol.20162214315210.5114/ceji.2016.6098727536199
    [Google Scholar]
  56. ReisM. MavinE. NicholsonL. GreenK. DickinsonA.M. WangX. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function.Front. Immunol.20189253810.3389/fimmu.2018.0253830473695
    [Google Scholar]
  57. LiY. GaoH. BrunnerT.M. HuX. YanY. LiuY. QiaoL. WuP. LiM. LiuQ. YangF. LinJ. LöhningM. ShenP. Menstrual blood-derived mesenchymal stromal cells efficiently ameliorate experimental autoimmune encephalomyelitis by inhibiting T cell activation in mice.Stem Cell Res. Ther.202213115510.1186/s13287‑022‑02838‑835410627
    [Google Scholar]
  58. ChoiY.S. JeongJ.A. LimD.S. Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect.Immunol. Invest.201241221422910.3109/08820139.2011.61902222017637
    [Google Scholar]
  59. ShahirM. Mahmoud HashemiS. AsadiradA. VarahramM. Kazempour-DizajiM. FolkertsG. GarssenJ. AdcockI. MortazE. Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells.J. Cell. Physiol.2020235107043705510.1002/jcp.2960132043593
    [Google Scholar]
  60. LuZ. MengS. ChangW. FanS. XieJ. GuoF. YangY. QiuH. LiuL. Mesenchymal stem cells activate Notch signaling to induce regulatory dendritic cells in LPS-induced acute lung injury.J. Transl. Med.202018124110.1186/s12967‑020‑02410‑z32546185
    [Google Scholar]
  61. CahillE.F. TobinL.M. CartyF. MahonB.P. EnglishK. Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells.Stem Cell Res. Ther.2015611910.1186/s13287‑015‑0021‑525890330
    [Google Scholar]
  62. LuZ. ChangW. MengS. XuX. XieJ. GuoF. YangY. QiuH. LiuL. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury.Stem Cell Res. Ther.201910137210.1186/s13287‑019‑1488‑231801626
    [Google Scholar]
  63. LiuX. QuX. ChenY. LiaoL. ChengK. ShaoC. ZenkeM. KeatingA. ZhaoR.C.H. Mesenchymal stem/stromal cells induce the generation of novel IL-10-dependent regulatory dendritic cells by SOCS3 activation.J. Immunol.201218931182119210.4049/jimmunol.110299622753940
    [Google Scholar]
  64. SpaggiariG.M. AbdelrazikH. BecchettiF. MorettaL. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC-derived prostaglandin E2.Blood2009113266576658310.1182/blood‑2009‑02‑20394319398717
    [Google Scholar]
  65. ZhangY. CaiW. HuangQ. GuY. ShiY. HuangJ. ZhaoF. LiuQ. WeiX. JinM. WuC. XieQ. ZhangY. WanB. ZhangY. Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells.Hepatology201459267168210.1002/hep.2667023929707
    [Google Scholar]
  66. Morante-PalaciosO. FondelliF. BallestarE. Martínez-CáceresE.M. Tolerogenic dendritic cells in autoimmunity and inflammatory diseases.Trends Immunol.2021421597510.1016/j.it.2020.11.00133293219
    [Google Scholar]
  67. ZhangB. YeoR.W.Y. LaiR.C. SimE.W.K. ChinK.C. LimS.K. Mesenchymal stromal cell exosome–enhanced regulatory T-cell production through an antigen-presenting cell–mediated pathway.Cytotherapy201820568769610.1016/j.jcyt.2018.02.37229622483
    [Google Scholar]
  68. XuW. FazekasG. HaraH. TabiraT. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis.J. Neuroimmunol.20051631-2243010.1016/j.jneuroim.2005.02.01115885305
    [Google Scholar]
  69. ZhangB. YamamuraT. KondoT. FujiwaraM. TabiraT. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells.J. Exp. Med.1997186101677168710.1084/jem.186.10.16779362528
    [Google Scholar]
  70. HaoJ. LiuR. PiaoW. ZhouQ. VollmerT.L. CampagnoloD.I. XiangR. La CavaA. Van KaerL. ShiF.D. Central nervous system (CNS)–resident natural killer cells suppress Th17 responses and CNS autoimmune pathology.J. Exp. Med.201020791907192110.1084/jem.2009274920696699
    [Google Scholar]
  71. ShiF.D. TakedaK. AkiraS. SarvetnickN. LjunggrenH.G. IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-gamma by NK cells.J. Immunol.200016563099310410.4049/jimmunol.165.6.309910975822
    [Google Scholar]
  72. SpaggiariG.M. CapobiancoA. BecchettiS. MingariM.C. MorettaL. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation.Blood200610741484149010.1182/blood‑2005‑07‑277516239427
    [Google Scholar]
  73. LiY. QuY.H. WuY.F. LiuL. LinX.H. HuangK. WeiJ. Bone marrow mesenchymal stem cells suppressing activation of allogeneic cytokine-induced killer/natural killer cells either by direct or indirect interaction.Cell Biol. Int.201539443544510.1002/cbin.1040425492047
    [Google Scholar]
  74. HuC.H.D. KosakaY. MarcusP. RashediI. KeatingA. Differential immunomodulatory effects of human bone marrow-derived mesenchymal stromal cells on natural killer cells.Stem Cells Dev.2019281493394310.1089/scd.2019.005931122145
    [Google Scholar]
  75. SotiropoulouP.A. PerezS.A. GritzapisA.D. BaxevanisC.N. PapamichailM. Interactions between human mesenchymal stem cells and natural killer cells.Stem Cells2006241748510.1634/stemcells.2004‑035916099998
    [Google Scholar]
  76. WangY.L. XueP. XuC.Y. WangZ. LiuX.S. HuaL.L. BaiH.Y. ZengZ.L. DuanH.F. LiJ.F. SPK1-transfected UCMSC has better therapeutic activity than UCMSC in the treatment of experimental autoimmune encephalomyelitis model of Multiple sclerosis.Sci. Rep.201881175610.1038/s41598‑018‑19703‑529379030
    [Google Scholar]
  77. SofroniewM.V. Astrocyte reactivity: Subtypes, states, and functions in CNS innate immunity.Trends Immunol.202041975877010.1016/j.it.2020.07.00432819810
    [Google Scholar]
  78. EscartinC. GaleaE. LakatosA. O’CallaghanJ.P. PetzoldG.C. Serrano-PozoA. SteinhäuserC. VolterraA. CarmignotoG. AgarwalA. AllenN.J. AraqueA. BarbeitoL. BarzilaiA. BerglesD.E. BonventoG. ButtA.M. ChenW.T. Cohen-SalmonM. CunninghamC. DeneenB. De StrooperB. Díaz-CastroB. FarinaC. FreemanM. GalloV. GoldmanJ.E. GoldmanS.A. GötzM. GutiérrezA. HaydonP.G. HeilandD.H. HolE.M. HoltM.G. IinoM. KastanenkaK.V. KettenmannH. KhakhB.S. KoizumiS. LeeC.J. LiddelowS.A. MacVicarB.A. MagistrettiP. MessingA. MishraA. MolofskyA.V. MuraiK.K. NorrisC.M. OkadaS. OlietS.H.R. OliveiraJ.F. PanatierA. ParpuraV. PeknaM. PeknyM. PellerinL. PereaG. Pérez-NievasB.G. PfriegerF.W. PoskanzerK.E. QuintanaF.J. RansohoffR.M. Riquelme-PerezM. RobelS. RoseC.R. RothsteinJ.D. RouachN. RowitchD.H. SemyanovA. SirkoS. SontheimerH. SwansonR.A. VitoricaJ. WannerI.B. WoodL.B. WuJ. ZhengB. ZimmerE.R. ZorecR. SofroniewM.V. VerkhratskyA. Reactive astrocyte nomenclature, definitions, and future directions.Nat. Neurosci.202124331232510.1038/s41593‑020‑00783‑433589835
    [Google Scholar]
  79. RothhammerV. MascanfroniI.D. BunseL. TakenakaM.C. KenisonJ.E. MayoL. ChaoC.C. PatelB. YanR. BlainM. AlvarezJ.I. KébirH. AnandasabapathyN. IzquierdoG. JungS. ObholzerN. PochetN. ClishC.B. PrinzM. PratA. AntelJ. QuintanaF.J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor.Nat. Med.201622658659710.1038/nm.410627158906
    [Google Scholar]
  80. LeeD.H. GeyerE. FlachA.C. JungK. GoldR. FlügelA. LinkerR.A. LühderF. Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination.Acta Neuropathol.2012123224725810.1007/s00401‑011‑0890‑322009304
    [Google Scholar]
  81. LiuW. WangY. GongF. RongY. LuoY. TangP. ZhouZ. ZhouZ. XuT. JiangT. YangS. YinG. ChenJ. FanJ. CaiW. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of a1 neurotoxic reactive astrocytes.J. Neurotrauma201936346948410.1089/neu.2018.583529848167
    [Google Scholar]
  82. VigoT. Voulgari-KokotaA. ErredeM. GirolamoF. OrtolanJ. MarianiM.C. FerraraG. VirgintinoD. BuffoA. Kerlero de RosboN. UccelliA. Mesenchymal stem cells instruct a beneficial phenotype in reactive astrocytes.Glia20216951204121510.1002/glia.2395833381863
    [Google Scholar]
  83. ChenX. LiangH. XiZ. YangY. ShanH. WangB. ZhongZ. XuC. YangG.Y. SunQ. SunY. BianL. BM-MSC transplantation alleviates intracerebral hemorrhage-induced brain injury, promotes astrocytes vimentin expression, and enhances astrocytes antioxidation via the Cx43/Nrf2/HO-1 Axis.Front. Cell Dev. Biol.2020830210.3389/fcell.2020.0030232457903
    [Google Scholar]
  84. XianP. HeiY. WangR. WangT. YangJ. LiJ. DiZ. LiuZ. BaskysA. LiuW. WuS. LongQ. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice.Theranostics20199205956597510.7150/thno.3387231534531
    [Google Scholar]
  85. QiuL. CaiY. GengY. YaoX. WangL. CaoH. ZhangX. WuQ. KongD. DingD. ShiY. WangY. WuJ. Mesenchymal stem cell-derived extracellular vesicles attenuate tPA-induced blood–brain barrier disruption in murine ischemic stroke models.Acta Biomater.202215442444210.1016/j.actbio.2022.10.02236367475
    [Google Scholar]
  86. BorstK. DumasA.A. PrinzM. Microglia: Immune and non-immune functions.Immunity202154102194220810.1016/j.immuni.2021.09.01434644556
    [Google Scholar]
  87. ChuF. ShiM. ZhengC. ShenD. ZhuJ. ZhengX. CuiL. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis.J. Neuroimmunol.20183181710.1016/j.jneuroim.2018.02.01529606295
    [Google Scholar]
  88. LiZ. LiuF. HeX. YangX. ShanF. FengJ. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia.Int. Immunopharmacol.20196726828010.1016/j.intimp.2018.12.00130572251
    [Google Scholar]
  89. ZhangJ. BullerB.A. ZhangZ.G. ZhangY. LuM. RoseneD.L. MedallaM. MooreT.L. ChoppM. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system.Exp. Neurol.202234711389510.1016/j.expneurol.2021.11389534653510
    [Google Scholar]
  90. JoseS. TanS.W. OoiY.Y. RamasamyR. VidyadaranS. Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-α levels.J. Neuroinflammation201411114910.1186/s12974‑014‑0149‑825182840
    [Google Scholar]
  91. LeeD.Y. JinM.S. ManavalanB. KimH.K. SongJ.H. ShinT.H. LeeG. Bidirectional Transcriptome analysis of rat bone marrow-derived mesenchymal stem cells and activated microglia in an in vitro coculture system.Stem Cells Int.2018201811110.1155/2018/612641330151012
    [Google Scholar]
  92. CheJ. WangH. DongJ. WuY. ZhangH. FuL. ZhangJ. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate neuroinflammation and oxidative stress through the NRF2/NF-κB/NLRP3 pathway.CNS Neurosci. Ther.2023
    [Google Scholar]
  93. LiR. LiuW. YinJ. ChenY. GuoS. FanH. LiX. ZhangX. HeX. DuanC. TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway.J. Neuroinflammation201815123110.1186/s12974‑018‑1279‑130126439
    [Google Scholar]
  94. LiuY. ZhangR. YanK. ChenF. HuangW. LvB. SunC. XuL. LiF. JiangX. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6.J. Neuroinflammation201411113510.1186/1742‑2094‑11‑13525088370
    [Google Scholar]
  95. WangJ. SunH. GuoR. GuoJ. TianX. WangJ. SunS. HanY. WangY. Exosomal miR-23b-3p from bone mesenchymal stem cells alleviates experimental autoimmune encephalomyelitis by inhibiting microglial pyroptosis.Exp. Neurol.202336311437410.1016/j.expneurol.2023.11437436907352
    [Google Scholar]
  96. FanJ. HanY. SunH. SunS. WangY. GuoR. GuoJ. TianX. WangJ. WangJ. Mesenchymal stem cell-derived exosomal microRNA-367–3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2.Biomed. Pharmacother.202316211459310.1016/j.biopha.2023.11459337001184
    [Google Scholar]
  97. KuhnS. GrittiL. CrooksD. DombrowskiY. Oligodendrocytes in development, myelin generation and beyond.Cells2019811142410.3390/cells811142431726662
    [Google Scholar]
  98. BradlM. LassmannH. Oligodendrocytes: Biology and pathology.Acta Neuropathol.20101191375310.1007/s00401‑009‑0601‑519847447
    [Google Scholar]
  99. WuM. KangQ. KangY. TongY. YangT. FanY. Catalpol regulates oligodendrocyte regeneration and remyelination by activating the GEF-Cdc42/Rac1 signaling pathway in EAE mice.Evid. Based Complement. Alternat. Med.2022202211810.1155/2022/707415736482934
    [Google Scholar]
  100. ClarkK. ZhangS. BartheS. KumarP. PivettiC. KreutzbergN. ReedC. WangY. PaxtonZ. FarmerD. GuoF. WangA. Placental mesenchymal stem cell-derived extracellular vesicles promote myelin regeneration in an animal model of multiple sclerosis.Cells2019812149710.3390/cells812149731771176
    [Google Scholar]
  101. ZhangJ.M. WangH. FanY.Y. YangF.H. Effect of mesenchymal stem cells transplantation on the changes of oligodendrocyte lineage in rat brain with experimental autoimmune encephalomyelitis.Brain Behav.2021112e0199910.1002/brb3.199933319488
    [Google Scholar]
  102. VaesJ.E.G. van KammenC.M. TrayfordC. van der ToornA. RuhwedelT. BendersM.J.N.L. DijkhuizenR.M. MöbiusW. van RijtS.H. NijboerC.H. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity.Glia202169365568010.1002/glia.2391933045105
    [Google Scholar]
  103. Joerger-MesserliM.S. ThomiG. HaeslerV. KellerI. RenzP. SurbekD.V. SchoeberleinA. Human Wharton’s jelly mesenchymal stromal cell-derived small extracellular vesicles drive oligodendroglial maturation by restraining MAPK/ERK and notch signaling pathways.Front. Cell Dev. Biol.2021962253910.3389/fcell.2021.62253933869172
    [Google Scholar]
  104. OppligerB. Joerger-MesserliM.S. SimillionC. MuellerM. SurbekD.V. SchoeberleinA. Mesenchymal stromal cells from umbilical cord Wharton’s jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact.Cytotherapy201719782983810.1016/j.jcyt.2017.03.07528457739
    [Google Scholar]
  105. van WaesbergheJ.H. KamphorstW. De GrootC.J. van WalderveenM.A. CastelijnsJ.A. RavidR. Lycklama à NijeholtG.J. van der ValkP. PolmanC.H. ThompsonA.J. BarkhofF. Axonal loss in multiple sclerosis lesions: Magnetic resonance imaging insights into substrates of disability.Ann. Neurol.199946574775410.1002/1531‑8249(199911)46:5<747::AID‑ANA10>3.0.CO;2‑410553992
    [Google Scholar]
  106. MewsI. BergmannM. BunkowskiS. GullottaF. BrückW. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions.Mult. Scler.199842556210.1177/1352458598004002039599334
    [Google Scholar]
  107. BrückW. BitschA. KolendaH. BrückY. StiefelM. LassmannH. Inflammatory central nervous system demyelination: Correlation of magnetic resonance imaging findings with lesion pathology.Ann. Neurol.199742578379310.1002/ana.4104205159392578
    [Google Scholar]
  108. TrubianiO. GiacoppoS. BalleriniP. DiomedeF. PiattelliA. BramantiP. MazzonE. Alternative source of stem cells derived from human periodontal ligament: A new treatment for experimental autoimmune encephalomyelitis.Stem Cell Res. Ther.201671110.1186/s13287‑015‑0253‑426729060
    [Google Scholar]
  109. SelimA.O. SelimS.A. ShalabyS.M. MosaadH. SaberT. Neuroprotective effects of placenta-derived mesenchymal stromal cells in a rat model of experimental autoimmune encephalomyelitis.Cytotherapy20161891100111310.1016/j.jcyt.2016.06.00227425406
    [Google Scholar]
  110. BaiL. LennonD.P. CaplanA.I. DeChantA. HeckerJ. KransoJ. ZarembaA. MillerR.H. Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in multiple sclerosis models.Nat. Neurosci.201215686287010.1038/nn.310922610068
    [Google Scholar]
  111. GramlichO.W. BrownA.J. GodwinC.R. ChimentiM.S. BolandL.K. AnkrumJ.A. KardonR.H. Systemic mesenchymal stem cell treatment mitigates structural and functional retinal ganglion cell degeneration in a mouse model of multiple sclerosis.Transl. Vis. Sci. Technol.2020981610.1167/tvst.9.8.1632855863
    [Google Scholar]
  112. GiacoppoS. ThangaveluS.R. DiomedeF. BramantiP. ContiP. TrubianiO. MazzonE. Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: A key role of IL-37.FASEB J.201731125592560810.1096/fj.201700524R28842429
    [Google Scholar]
  113. ShiY. WangY. LiQ. LiuK. HouJ. ShaoC. WangY. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases.Nat. Rev. Nephrol.201814849350710.1038/s41581‑018‑0023‑529895977
    [Google Scholar]
  114. AhmadifardR. JafarzadehA. MahmoodiM. NematiM. RahmaniM. KhorramdelazadH. AyoobiF. Interferon-γ-treated mesenchymal stem cells modulate the T cell-related chemokines and chemokine receptors in an animal model of experimental autoimmune encephalomyelitis.Drug Res. (Stuttg.)202373421322310.1055/a‑1995‑636536754055
    [Google Scholar]
  115. LingX. WangT. HanC. WangP. LiuX. ZhengC. BiJ. ZhouX. IFN-γ-primed hUCMSCs significantly reduced inflammation via the Foxp3/ROR-γt/STAT3 signaling pathway in an animal model of multiple sclerosis.Front. Immunol.20221383534510.3389/fimmu.2022.83534535300342
    [Google Scholar]
  116. TorkamanM. GhollasiM. Mohammadnia-AfrouziM. SalimiA. AmariA. The effect of transplanted human Wharton’s jelly mesenchymal stem cells treated with IFN-γ on experimental autoimmune encephalomyelitis mice.Cell. Immunol.201731111210.1016/j.cellimm.2016.09.01227697286
    [Google Scholar]
  117. KurteM. Vega-LetterA.M. Luz-CrawfordP. DjouadF. NoëlD. KhouryM. CarriónF. Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE.Stem Cell Res. Ther.202011141610.1186/s13287‑020‑01840‑232988406
    [Google Scholar]
  118. Heidari Barchi NezhadR. AsadiF. MirzaeiM.R. Abtahi FroushaniS.M. Comparison of the effects of 17β- estradiol treated and untreated mesenchymal stem cells on ameliorating animal model of multiple sclerosis.Iran. J. Basic Med. Sci.201821993694230524694
    [Google Scholar]
  119. YangY. LeeE.H. YangZ. Hypoxia-conditioned mesenchymal stem cells in tissue regeneration application.Tissue Eng. Part B Rev.202228596697710.1089/ten.teb.2021.014534569290
    [Google Scholar]
  120. Marin-BañascoC. BenabdellahK. Melero-JerezC. OliverB. Pinto-MedelM.J. Hurtado-GuerreroI. de CastroF. ClementeD. FernándezO. MartinF. LeyvaL. SuardíazM. Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis.Br. J. Pharmacol.2017174323825310.1111/bph.1367427882538
    [Google Scholar]
  121. LiaoW. PhamV. LiuL. RiazifarM. PoneE.J. ZhangS.X. MaF. LuM. WalshC.M. ZhaoW. Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis.Biomaterials201677879710.1016/j.biomaterials.2015.11.00526584349
    [Google Scholar]
  122. PayneN.L. SunG. McDonaldC. MoussaL. Emerson-WebberA. Loisel-MeyerS. MedinJ.A. SiatskasC. BernardC.C.A. Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity.Brain Behav. Immun.20133010311410.1016/j.bbi.2013.01.07923369732
    [Google Scholar]
  123. PayneN.L. DantanarayanaA. SunG. MoussaL. CaineS. McDonaldC. HerszfeldD. BernardC.C.A. SiatskasC. Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery in experimental autoimmune demyelination.Cell Adhes. Migr.20126317918910.4161/cam.2034122568986
    [Google Scholar]
  124. RostamiM. HaidariK. AminiH. ShahbaziM. Genetically engineered mesenchymal stem cell therapy against murine experimental autoimmune encephalomyelitis.Mol. Neurobiol.20225963449345710.1007/s12035‑022‑02774‑x35325396
    [Google Scholar]
  125. CoboM. AndersonP. BenabdellahK. ToscanoM.G. MuñozP. García-PérezA. GutierrezI. DelgadoM. MartinF. Mesenchymal stem cells expressing vasoactive intestinal peptide ameliorate symptoms in a model of chronic multiple sclerosis.Cell Transplant.201322583985410.3727/096368912X65740423031550
    [Google Scholar]
  126. LuZ. HuX. ZhuC. WangD. ZhengX. LiuQ. Overexpression of CNTF in mesenchymal stem cells reduces demyelination and induces clinical recovery in experimental autoimmune encephalomyelitis mice.J. Neuroimmunol.20092061-2586910.1016/j.jneuroim.2008.10.01419081144
    [Google Scholar]
  127. HuR. LvW. ZhangS. LiuY. SunB. MengY. KongQ. MuL. WangG. ZhangY. LiH. LiuX. Combining miR-23b exposure with mesenchymal stem cell transplantation enhances therapeutic effects on EAE.Immunol. Lett.2021229182610.1016/j.imlet.2020.11.00733238163
    [Google Scholar]
  128. Mohyeddin BonabM. YazdanbakhshS. LotfiJ. AlimoghaddomK. TalebianF. HooshmandF. GhavamzadehA. NikbinB. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study.Iran. J. Immunol.200741505717652844
    [Google Scholar]
  129. KarussisD. KarageorgiouC. Vaknin-DembinskyA. Gowda-KurkalliB. GomoriJ.M. KassisI. BulteJ.W.M. PetrouP. Ben-HurT. AbramskyO. SlavinS. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis.Arch. Neurol.201067101187119410.1001/archneurol.2010.24820937945
    [Google Scholar]
  130. YamoutB. HouraniR. SaltiH. BaradaW. El-HajjT. Al-KutoubiA. HerlopianA. BazE.K. MahfouzR. Khalil-HamdanR. KreidiehN.M.A. El-SabbanM. BazarbachiA. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: A pilot study.J. Neuroimmunol.20102271-218518910.1016/j.jneuroim.2010.07.01320728948
    [Google Scholar]
  131. ConnickP. KolappanM. CrawleyC. WebberD.J. PataniR. MichellA.W. DuM.Q. LuanS.L. AltmannD.R. ThompsonA.J. CompstonA. ScottM.A. MillerD.H. ChandranS. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study.Lancet Neurol.201211215015610.1016/S1474‑4422(11)70305‑222236384
    [Google Scholar]
  132. YunJ.W. AhnJ.H. KwonE. KimS.H. KimH. JangJ.J. KimW.H. KimJ.H. HanS. KimJ.T. KimJ.H. KimW. KuS.Y. DoB.R. KangB.C. Human umbilical cord-derived mesenchymal stem cells in acute liver injury: Hepatoprotective efficacy, subchronic toxicity, tumorigenicity, and biodistribution.Regul. Toxicol. Pharmacol.20168143744710.1016/j.yrtph.2016.09.02927693706
    [Google Scholar]
  133. Le BlancK. TammikC. RosendahlK. ZetterbergE. RingdénO. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells.Exp. Hematol.2003311089089610.1016/S0301‑472X(03)00110‑314550804
    [Google Scholar]
  134. ThompsonM. MeiS.H.J. WolfeD. ChampagneJ. FergussonD. StewartD.J. SullivanK.J. DoxtatorE. LaluM. EnglishS.W. GrantonJ. HuttonB. MarshallJ. MaybeeA. WalleyK.R. SantosC.D. WinstonB. McIntyreL. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis.EClinicalMedicine20201910024910.1016/j.eclinm.2019.10024931989101
    [Google Scholar]
  135. DeuseT. StubbendorffM. Tang-QuanK. PhillipsN. KayM.A. EiermannT. PhanT.T. VolkH.D. ReichenspurnerH. RobbinsR.C. SchrepferS. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells.Cell Transplant.201120565566710.3727/096368910X53647321054940
    [Google Scholar]
  136. BárciaR.N. SantosJ.M. FilipeM. TeixeiraM. MartinsJ.P. AlmeidaJ. Água-DoceA. AlmeidaS.C.P. VarelaA. PohlS. DittmarK.E.J. CaladoS. SimõesS.I. GasparM.M. CruzM.E.M. LindenmaierW. GraçaL. CruzH. CruzP.E. What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells?Stem Cells Int.2015201511410.1155/2015/58398426064137
    [Google Scholar]
  137. HoriA. TakahashiA. MiharuY. YamaguchiS. SugitaM. MukaiT. NagamuraF. Nagamura-InoueT. Superior migration ability of umbilical cord-derived mesenchymal stromal cells (MSCs) toward activated lymphocytes in comparison with those of bone marrow and adipose-derived MSCs.Front. Cell Dev. Biol.202412132921810.3389/fcell.2024.132921838529405
    [Google Scholar]
  138. JinH. BaeY. KimM. KwonS.J. JeonH. ChoiS. KimS. YangY. OhW. ChangJ. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy.Int. J. Mol. Sci.2013149179861800110.3390/ijms14091798624005862
    [Google Scholar]
  139. NajarM. RaicevicG. Fayyad-KazanH. De BruynC. BronD. ToungouzM. LagneauxL. Impact of different mesenchymal stromal cell types on T-cell activation, proliferation and migration.Int. Immunopharmacol.201315469370210.1016/j.intimp.2013.02.02023499510
    [Google Scholar]
  140. BarberiniD.J. FreitasN.P.P. MagnoniM.S. MaiaL. ListoniA.J. HecklerM.C. SudanoM.J. GolimM.A. da Cruz Landim-AlvarengaF. AmorimR.M. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential.Stem Cell Res. Ther.2014512510.1186/scrt41424559797
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X305349240511125540
Loading
/content/journals/cscr/10.2174/011574888X305349240511125540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test