Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

This study investigates the therapeutic potential of adipose-derived stem cells (ASCs) in diabetic foot ulcers (DFUs). The goal is to further research regenerative medicine by improving knowledge of ASC-based therapies in diabetic wound management. A comprehensive literature review included studies from reputable databases, including PubMed and the Cochrane Library. We paid particular attention to the clinical, , and investigations of the utility and effectiveness of ASCs in treating DFU. We also highlighted novel isolation techniques and application methods for ASCs in chronic wound management. ASCs have shown great potential in regenerative interventions for diabetes, especially in DFU management. These cells facilitate wound repair by differentiating into different cell types, promoting angiogenesis, secreting growth factors, reducing inflammation, and increasing wound perfusion. However, the current body of research on ASC applications for DFU still requires further investigation. This shows the importance of thoroughly studying their biological mechanisms and therapeutic uses. This review establishes that ASC-based treatments effectively enhance outcomes for patients suffering from DFU. We recommend further investigation of the functionality of ASCs and therapeutic approaches to maximize their therapeutic potential in managing diabetic wounds, thereby advancing the development of regenerative medicine.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X334166240921120502
2024-10-01
2025-11-04
Loading full text...

Full text loading...

References

  1. SabooA. RathnayakeA. VangavetiV.N. MalabuU.H. Wound healing effects of dipeptidyl peptidase-4 inhibitors: An emerging concept in management of diabetic foot ulcer ndasha review.Diabetes Metab. Syndr.201510.1016/j.dsx.2015.04.00625990796
    [Google Scholar]
  2. Jodheea-JuttonA. HindochaS. Bhaw-LuximonA. Health economics of diabetic foot ulcer and recent trends to accelerate treatment.Foot20225210190910190910.1016/j.foot.2022.10190936049265
    [Google Scholar]
  3. BegumF. KeniR. AhujaT. BeegumF. NandakumarK. ShenoyR.R. Notch signaling: A possible therapeutic target and its role in diabetic foot ulcers.Diabetes Metab. Syndr.202216710254210.1016/j.dsx.2022.102542
    [Google Scholar]
  4. MizukamiH. YagihashiS. Exploring a new therapy for diabetic polyneuropathy - The application of stem cell transplantation.Front. Endocrinol. (Lausanne)201454510.3389/fendo.2014.0004524782826
    [Google Scholar]
  5. VermetteM. TrottierV. MénardV. SaintpierreL. RoyA. FradetteJ. Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells.Biomaterials200728182850286010.1016/j.biomaterials.2007.02.03017374391
    [Google Scholar]
  6. Stem cell therapy market by type (allogeneic, autologous) cell source (adipose tissue, bonemarrow, placenta/umbical cord), therapeutic application (musculoskeletal, wounds, surgeries, inflammatory, autoimmune, cardiovascular) & region - Global forecast to 2028.2023Available from: https://www.marketsandmarkets.com/Market-Reports/stem-cell-technologies-and-global-market-48.html
  7. HassanW.U. GreiserU. WangW. Role of adipose-derived stem cells in wound healing.Wound Repair Regen.201422331332510.1111/wrr.1217324844331
    [Google Scholar]
  8. SabolR.A. BowlesA.C. CôtéA. WiseR. PashosN. BunnellB.A. Therapeutic potential of adipose stem cells.Adv. Exp. Med. Biol.20181341152510.1007/5584_2018_24830051318
    [Google Scholar]
  9. RacaruS. Bolton SaghdaouiL. Roy ChoudhuryJ. WellsM. DaviesA.H. Offloading treatment in people with diabetic foot disease: A systematic scoping review on adherence to foot offloading.Diabetes Metab. Syndr.202216510249310.1016/j.dsx.2022.10249335468484
    [Google Scholar]
  10. SunH SaeediP KarurangaS PinkepankM OgurtsovaK DuncanBB SteinC BasitA ChanJCN MbanyaJC PavkovME RamachandaranA WildSH JamesS HermanWH ZhangP BommerC KuoS BoykoEJ MaglianoDJ IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119
    [Google Scholar]
  11. WhitingD.R. GuariguataL. WeilC. ShawJ. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030.Diabetes Res. Clin. Pract.201194331132110.1016/j.diabres.2011.10.02922079683
    [Google Scholar]
  12. GhoshP. ValiaR. Burden of diabetic foot ulcers in India: Evidence landscape from published literature.Value Health2017209A48510.1016/j.jval.2017.08.489
    [Google Scholar]
  13. BusSA. NettenJJV. A shift in priority in diabetic foot care and research: 75% of foot ulcers are preventable.Diabetes Metab. Res. Rev.201632S119520010.1002/dmrr.2738
    [Google Scholar]
  14. PendseyS. Reducing diabetic foot problems and limb amputation: An experience from India.Global Perspective on Diabetic Foot UlcerationsIntechOpenRijeka, Croatia201110.5772/27450
    [Google Scholar]
  15. AlaviA. SibbaldR.G. MayerD. GoodmanL. BotrosM. ArmstrongD.G. WooK. BoeniT. AyelloE.A. KirsnerR.S. Diabetic foot ulcers.J. Am. Acad. Dermatol.201470121.e121.e2410.1016/j.jaad.2013.07.04824355276
    [Google Scholar]
  16. BahmadH.F. PoppitiR. AlexisJ. Nanotherapeutic approach to treat diabetic foot ulcers using tissue-engineered nanofiber skin substitutes: A review.Diabetes Metab. Syndr.202115248749110.1016/j.dsx.2021.02.02533668000
    [Google Scholar]
  17. KimJ. The pathophysiology of diabetic foot: A narrative review.J. Yeungnam Med. Sci.202340432833410.12701/jyms.2023.0073137797951
    [Google Scholar]
  18. BusS.A. ArmstrongD.G. GoodayC. JarlG. CaravaggiC. ViswanathanV. LazzariniP.A. Guidelines on offloading foot ulcers in persons with diabetes (IWGDF 2019 update).Diabetes Metab. Res. Rev.202036S1e327410.1002/dmrr.327432176441
    [Google Scholar]
  19. PalumboP. LombardiF. SiragusaG. CifoneM.G. CinqueB. GiulianiM. Methods of isolation, Characterization and expansion of human adipose-derived stem cells (ASCs): An overview.Int. J. Mol. Sci.2018197189710.3390/ijms1907189729958391
    [Google Scholar]
  20. GimbleJ.M. GuilakF. Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential.Cytotherapy20035536236910.1080/1465324031000302614578098
    [Google Scholar]
  21. FreseL. DijkmanP.E. HoerstrupS.P. Adipose tissue-derived stem cells in regenerative medicine.Transfus. Med. Hemother.201643426827410.1159/00044818027721702
    [Google Scholar]
  22. VasiliadisA.V. GalanisN. Human bone marrow-derived mesenchymal stem cells from different bone sources: A panorama.Stem Cell Investig.202071510.21037/sci‑2020‑01332964008
    [Google Scholar]
  23. MianaV.V. Prieto GonzálezE.A. Adipose tissue stem cells in regenerative medicine.Ecancermedicalscience20181282210.3332/ecancer.2018.82229662535
    [Google Scholar]
  24. HuR. LingW. XuW. HanD. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing.PLoS One201493e9267610.1371/journal.pone.009267624664167
    [Google Scholar]
  25. ChuD.T. Nguyen Thi PhuongT. TienN.L.B. TranD.K. MinhL.B. ThanhV.V. Gia AnhP. PhamV.H. Thi NgaV. Adipose tissue stem cells for therapy: An update on the progress of isolation, culture, storage, and clinical application.J. Clin. Med.20198791710.3390/jcm807091731247996
    [Google Scholar]
  26. RaposioE. SimonacciF. PerrottaR.E. Adipose-derived stem cells: Comparison between two methods of isolation for clinical applications.Ann. Med. Surg. (Lond.)201720879110.1016/j.amsu.2017.07.01828736612
    [Google Scholar]
  27. Mildmay-WhiteA. KhanW. Cell surface markers on adipose-derived stem cells: A systematic review.Curr. Stem Cell Res. Ther.201712648449210.2174/1574888X1166616042912213327133085
    [Google Scholar]
  28. ZhuY. LiuT. SongK. FanX. MaX. CuiZ. Adipose-derived stem cell: A better stem cell than BMSC.Cell Biochem. Funct.200826666467510.1002/cbf.148818636461
    [Google Scholar]
  29. BorenaB.M. MartensA. BroeckxS.Y. MeyerE. ChiersK. DuchateauL. SpaasJ.H. Regenerative skin wound healing in mammals: State-of-the-art on growth factor and stem cell based treatments.Cell. Physiol. Biochem.201536112310.1159/00037404925924569
    [Google Scholar]
  30. DaiW. ChenL. TanH. WangJ. LaiZ. KamingaA.C. LiY. LiuA. Association between social support and recovery from post-traumatic stress disorder after flood: A 13–14 year follow-up study in Hunan, China.BMC Public Health201616119410.1186/s12889‑016‑2871‑x26924178
    [Google Scholar]
  31. Mahmood-ul-HassanM. JonesG. The Bats of Pakistan – The Least Known CreaturesVerlag Dr. Muller2009
    [Google Scholar]
  32. KimW.S. ParkB.S. SungJ.H. The wound-healing and antioxidant effects of adipose-derived stem cells.Expert Opin. Biol. Ther.20099787988710.1517/1471259090303968419522555
    [Google Scholar]
  33. RadtkeC. SchmitzB. SpiesM. KocsisJ.D. VogtP.M. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells.Int. J. Dev. Neurosci.200927881782310.1016/j.ijdevneu.2009.08.00619699793
    [Google Scholar]
  34. LindroosB. SuuronenR. MiettinenS. The potential of adipose stem cells in regenerative medicine.Stem Cell Rev.20117226929110.1007/s12015‑010‑9193‑720853072
    [Google Scholar]
  35. YoshimuraK. AsanoY. AoiN. KuritaM. OshimaY. SatoK. InoueK. SugaH. EtoH. KatoH. HariiK. Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications.Breast J.201016216917510.1111/j.1524‑4741.2009.00873.x19912236
    [Google Scholar]
  36. AluigiM.G. CoradeghiniR. GuidaC. ScanarottiC. BassiA.M. FalugiC. SantiP. RaposioE. Pre-adipocytes commitment to neurogenesis 1: Preliminary localisation of cholinergic molecules.Cell Biol. Int.200933559460110.1016/j.cellbi.2009.02.01419286468
    [Google Scholar]
  37. GentileP. ScioliM.G. BielliA. OrlandiA. CervelliV. Concise review: The use of adipose-derived stromal vascular fraction cells and platelet rich plasma in regenerative plastic surgery.Stem Cells201735111713410.1002/stem.249827641055
    [Google Scholar]
  38. MeyerJ. SalamonA. MispagelS. KampG. PetersK. Energy metabolic capacities of human adipose-derived mesenchymal stromal cells in vitro and their adaptations in osteogenic and adipogenic differentiation.Exp. Cell Res.2018370263264210.1016/j.yexcr.2018.07.02830036541
    [Google Scholar]
  39. GrottkauB.E. LinY. Osteogenesis of adipose-derived stem cells.Bone Res.20131213314510.4248/BR20130200326273498
    [Google Scholar]
  40. WeiY. SunX. WangW. HuY. Adipose-derived stem cells and chondrogenesis.Cytotherapy20079871271610.1080/1465324070162059617917888
    [Google Scholar]
  41. JohnstoneB. HeringT.M. CaplanA.I. GoldbergV.M. YooJ.U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp. Cell Res.1998238126527210.1006/excr.1997.38589457080
    [Google Scholar]
  42. WuS.C. ChenC.H. WangJ.Y. LinY.S. ChangJ.K. HoM.L. Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway.Acta Biomater.20186622423710.1016/j.actbio.2017.11.02529128538
    [Google Scholar]
  43. MartinP. Wound healing - Aiming for perfect skin regeneration.Science19972765309758110.1126/science.276.5309.759082989
    [Google Scholar]
  44. SivanU. JayakumarK. KrishnanL.K. Constitution of fibrin-based niche for in vitro differentiation of adipose-derived mesenchymal stem cells to keratinocytes.Biores. Open Access20143633934710.1089/biores.2014.003625469318
    [Google Scholar]
  45. HongS.J. JiaS.X. XieP. XuW. LeungK.P. MustoeT.A. GalianoR.D. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds.PLoS One201381e5564010.1371/journal.pone.005564023383253
    [Google Scholar]
  46. DengJ. ShiY. GaoZ. ZhangW. WuX. CaoW. LiuW. Inhibition of pathological phenotype of hypertrophic scar fibroblasts via coculture with adipose-derived stem cells.Tissue Eng. Part A2018245-638239310.1089/ten.tea.2016.055028562226
    [Google Scholar]
  47. Planat-BenardV. SilvestreJ.S. CousinB. AndréM. NibbelinkM. TamaratR. ClergueM. MannevilleC. Saillan-BarreauC. DuriezM. TedguiA. LevyB. PénicaudL. CasteillaL. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives.Circulation2004109565666310.1161/01.CIR.0000114522.38265.6114734516
    [Google Scholar]
  48. HuangS.P. HuangC.H. ShyuJ.F. LeeH.S. ChenS.G. ChanJ.Y.H. HuangS.M. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model.J. Biomed. Sci.20132015110.1186/1423‑0127‑20‑5123876213
    [Google Scholar]
  49. CaoY. SunZ. LiaoL. MengY. HanQ. ZhaoR.C. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo.Biochem. Biophys. Res. Commun.2005332237037910.1016/j.bbrc.2005.04.13515896706
    [Google Scholar]
  50. RehmanJ. TraktuevD. LiJ. Merfeld-ClaussS. Temm-GroveC.J. BovenkerkJ.E. PellC.L. JohnstoneB.H. ConsidineR.V. MarchK.L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells.Circulation2004109101292129810.1161/01.CIR.0000121425.42966.F114993122
    [Google Scholar]
  51. WernerS. GroseR. Regulation of wound healing by growth factors and cytokines.Physiol. Rev.200383383587010.1152/physrev.2003.83.3.83512843410
    [Google Scholar]
  52. CerqueiraM.T. PirracoR.P. SantosT.C. RodriguesD.B. FriasA.M. MartinsA.R. ReisR.L. MarquesA.P. Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds.Biomacromolecules201314113997400810.1021/bm401106224093541
    [Google Scholar]
  53. LeeJ. AbdeenA.A. TangX. SaifT.A. KilianK.A. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.Acta Biomater.201642465510.1016/j.actbio.2016.06.03727375285
    [Google Scholar]
  54. YancopoulosG.D. DavisS. GaleN.W. RudgeJ.S. WiegandS.J. HolashJ. Vascular-specific growth factors and blood vessel formation.Nature2000407680124224810.1038/3502521511001067
    [Google Scholar]
  55. HeoS.C. JeonE.S. LeeI.H. KimH.S. KimM.B. KimJ.H. Tumor necrosis factor-α-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms.J. Invest. Dermatol.201113171559156710.1038/jid.2011.6421451545
    [Google Scholar]
  56. HsuS. HsiehP.S. Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model.Wound Repair Regen.2015231576410.1111/wrr.1223925421559
    [Google Scholar]
  57. SalehiH. AmirpourN. NiapourA. RazaviS. An overview of neural differentiation potential of human adipose derived stem cells.Stem Cell Rev.2016121264110.1007/s12015‑015‑9631‑726490462
    [Google Scholar]
  58. VargheseJ. GriffinM. MosahebiA. ButlerP. Systematic review of patient factors affecting adipose stem cell viability and function: Implications for regenerative therapy.Stem Cell Res. Ther.2017814510.1186/s13287‑017‑0483‑828241882
    [Google Scholar]
  59. MizunoH. ZukP.A. ZhuM. LorenzP.H. BenhaimP. HedrickM.H. Myogenic differentiation by human processed lipoaspirate cells.Plast. Reconstr. Surg.2002109119920910.1097/00006534‑200201000‑0003011786812
    [Google Scholar]
  60. BacouF. AndalousiR.B.E. DaussinP.A. MicallefJ.P. LevinJ.M. ChammasM. CasteillaL. ReyneY. NouguèsJ. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle.Cell Transplant.200413210311110.3727/000000004773301771
    [Google Scholar]
  61. KatoH. MinamizatoH. OhnoH. OhiraY. IzawaT. Exercise ameliorates high-fat diet-induced impairment of differentiation of adipose-derived stem cells into neuron-like cells in rats.J. Cell. Physiol.201923421452146010.1002/jcp.2695730076718
    [Google Scholar]
  62. NagataH. IiM. KohbayashiE. HoshigaM. HanafusaT. AsahiM. Cardiac adipose-derived stem cells exhibit high differentiation potential to cardiovascular cells in C57BL/6 mice.Stem Cells Transl. Med.20165214115110.5966/sctm.2015‑008326683873
    [Google Scholar]
  63. MaT. SunJ. ZhaoZ. LeiW. ChenY. WangX. YangJ. ShenZ. A brief review: Adipose-derived stem cells and their therapeutic potential in cardiovascular diseases.Stem Cell Res. Ther.20178112410.1186/s13287‑017‑0585‑328583198
    [Google Scholar]
  64. YunIS JeonYR LeeWJ LeeJW RahDK TarkKC Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: A pilot study.Dermatol. Surg.201238101678168810.1111/j.1524‑4725.2012.02495.x
    [Google Scholar]
  65. GonzálezM.A. Gonzalez-ReyE. RicoL. BüscherD. DelgadoM. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses.Gastroenterology2009136397898910.1053/j.gastro.2008.11.04119135996
    [Google Scholar]
  66. FangB. SongY. LinQ. ZhangY. CaoY. ZhaoR.C. MaY. Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children.Pediatr. Transplant.200711781481710.1111/j.1399‑3046.2007.00780.x17910665
    [Google Scholar]
  67. ChulpanovaD.S. KitaevaK.V. TazetdinovaL.G. JamesV. RizvanovA.A. SolovyevaV.V. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment.Front. Pharmacol.2018925910.3389/fphar.2018.0025929615915
    [Google Scholar]
  68. Castro-GoveaY. De La Garza-PinedaO. Lara-AriasJ. Chacón-MartínezH. Mecott-RiveraG. Salazar-LozanoA. Valdes-FloresE. Cell-assisted lipotransfer for the treatment of parry-romberg syndrome.Arch. Plast. Surg.201239665966210.5999/aps.2012.39.6.65923233894
    [Google Scholar]
  69. MatsumotoD. SatoK. GondaK. TakakiY. ShigeuraT. SatoT. Aiba-KojimaE. IizukaF. InoueK. SugaH. YoshimuraK. Cell-assisted lipotransfer: Supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection.Tissue Eng.200612123375338210.1089/ten.2006.12.337517518674
    [Google Scholar]
  70. EternoV. ZambelliA. PavesiL. VillaniL. ZaniniV. PetroloG. ManeraS. TuscanoA. AmatoA. Adipose-derived mesenchymal stem cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling.Oncotarget20145361363310.18632/oncotarget.135924327602
    [Google Scholar]
  71. StriogaM. ViswanathanS. DarinskasA. SlabyO. MichalekJ. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells.Stem Cells Dev.201221142724275210.1089/scd.2011.072222468918
    [Google Scholar]
  72. ZhangH-N. LiL. LengP. WangY-Z. LvC-Y. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.Chin. J. Traumatol.2009122929719321053
    [Google Scholar]
  73. HennigT. LorenzH. ThielA. GoetzkeK. DickhutA. GeigerF. RichterW. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP-6.J. Cell. Physiol.2007211368269110.1002/jcp.2097717238135
    [Google Scholar]
  74. KinghamP.J. KolarM.K. NovikovaL.N. NovikovL.N. WibergM. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair.Stem Cells Dev.201423774175410.1089/scd.2013.039624124760
    [Google Scholar]
  75. VisweswaranM. ArfusoF. DilleyR.J. NewsholmeP. DharmarajanA. The inhibitory influence of adipose tissue-derived mesenchymal stem cell environment and Wnt antagonism on breast tumour cell lines.Int. J. Biochem. Cell Biol.201895637210.1016/j.biocel.2017.12.01329277675
    [Google Scholar]
  76. Perez-FavilaA. Martinez-FierroM.L. Rodriguez-LazaldeJ.G. Cid-BaezM.A. Zamudio-OsunaM.J. Martinez-BlancoM.R. Mollinedo-MontañoF.E. Rodriguez-SanchezI.P. Castañeda-MirandaR. Garza-VelozI. Current therapeutic strategies in diabetic foot ulcers.Medicina (Kaunas)2019551171410.3390/medicina5511071431731539
    [Google Scholar]
  77. KernS. EichlerH. StoeveJ. KlüterH. BiebackK. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.Stem Cells20062451294130110.1634/stemcells.2005‑034216410387
    [Google Scholar]
  78. TrzynaA Banaś-ZąbczykA. Adipose-derived stem cells secretome and its potential application in Stem Cell-Free Therapy.Biomolecules202111687810.3390/biom11060878
    [Google Scholar]
  79. KrawczenkoA. KlimczakA. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration.Int. J. Mol. Sci.2022235242510.3390/ijms2305242535269568
    [Google Scholar]
  80. Al-GhadbanS. BunnellB.A. Adipose tissue-derived stem cells: Immunomodulatory effects and therapeutic potential.Physiology (Bethesda)202035212513310.1152/physiol.00021.201932027561
    [Google Scholar]
  81. MoonK.C. SuhH.S. KimK.B. HanS.K. YoungK.W. LeeJ.W. KimM.H. Potential of allogeneic adipose-derived stem cell–hydrogel complex for treating diabetic foot ulcers.Diabetes201968483784610.2337/db18‑069930679183
    [Google Scholar]
  82. IronsR.F. CahillK.W. RattiganD.A. MarcotteJ.H. FromerM.W. ChangS. ZhangP. BehlingE.M. BehlingK.C. CaputoF.J. Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model.J. Vasc. Surg.2018686115S125S10.1016/j.jvs.2018.01.06529753580
    [Google Scholar]
  83. MarinoG. MoraciM. ArmeniaE. OrabonaC. SergioR. De SenaG. CapuozzoV. BarbarisiM. RossoF. GiordanoG. IovinoF. BarbarisiA. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease.J. Surg. Res.20131851364410.1016/j.jss.2013.05.02423773718
    [Google Scholar]
  84. ChanY.W. SoC. YauK.L. ChiuK.C. WangX. ChanF.L. TsangS.Y. Adipose-derived stem cells and cancer cells fuse to generate cancer stem cell-like cells with increased tumorigenicity.J. Cell. Physiol.2020235106794680710.1002/jcp.2957431994190
    [Google Scholar]
  85. FonsecaA.C. MelchelsF.P.W. FerreiraM.J.S. MoxonS.R. PotjewydG. DargavilleT.R. KimberS.J. DomingosM. Emulating human tissues and organs: A bioprinting perspective toward personalized medicine.Chem. Rev.202012019110931113910.1021/acs.chemrev.0c0034232937071
    [Google Scholar]
  86. DevireddyR. ThirumalaS. Preservation protocols for human adipose tissue-derived adult stem cells.Methods Mol. Biol.201170236939410.1007/978‑1‑61737‑960‑4_2721082416
    [Google Scholar]
  87. ZhangY. RavikumarM. LingL. NurcombeV. CoolS.M. Age-related changes in the infammatory status of human mesenchymal stem cells: Implications for cell therapy.Stem Cell Rep.202116469470710.1016/j.stemcr.2021.01.02133636113
    [Google Scholar]
  88. WuX. XuX. XiangY. FanD. AnQ. YueG. JinZ. DingJ. HuY. DuQ. XuJ. XieR. Exosome-mediated effects and applications in inflammatory diseases of the digestive system.Eur. J. Med. Res.202227116310.1186/s40001‑022‑00792‑y36045437
    [Google Scholar]
  89. Kizilay ManciniÖ. LoraM. Shum-TimD. NadeauS. RodierF. ColmegnaI. A proinfammatory secretome mediates the impaired immunopotency of human mesenchymal stromal cells in elderly patients with Atherosclerosis.Stem Cells Transl. Med.2017641132114010.1002/sctm.16‑022128194905
    [Google Scholar]
  90. Askø AndersenJ. RasmussenA. Frimodt-MøllerM. EngbergS. SteeneveldE. Kirketerp-MøllerK. O’BrienT. RossingP. Novel topical allogeneic bone-marrow-derived mesenchymal stem cell treatment of hard-to-heal diabetic foot ulcers: A proof of concept study.Stem Cell Res. Ther.202213128010.1186/s13287‑022‑02951‑835765085
    [Google Scholar]
  91. MikłoszA. ChabowskiA. Efficacy of adipose-derived mesenchymal stem cell therapy in the treatment of chronic micro-and macrovascular complications of diabetes.Diabetes Obes. Metab.202426379380810.1111/dom.1537538073423
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X334166240921120502
Loading
/content/journals/cscr/10.2174/011574888X334166240921120502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test