Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

To determine the effectiveness of bone marrow-derived mesenchymal stem cell therapy on visual acuity and visual field in patients with retinitis pigmentosa.

Objective

Stem cell treatment in retinitis pigmentosa provides improvement in visual acuity and visual field.

Methods

Forty-seven eyes of 27 patients diagnosed with retinitis pigmentosa were included in our study.

Allogeneic bone marrow-derived mesenchymal stem cells were administered by deep subtenon injection. Complete routine ophthalmological examinations, optical coherence tomography (Zeiss, Cirrus HD-OCT) measurements, and visual field (Humphrey perimetry, 30-2) tests were performed on all patients before the treatment and on the 1st, 3rd, and 6th month after treatment. The best corrected visual acuities of the patients were determined by the Snellen chart and converted to logMAR. Visual evoked potential (VEP) and electroretinogram (ERG) examinations of the patients before the treatment and on the 6th month after the treatment were performed (Metrovision) data were compared.

Results

Visual acuities were 0.74 ± 0.49 logMAR before treatment and 0.61 ± 0.46 logMAR after treatment. Visual acuity had a statistically significant increase ( < 0.001). The visual field deviation was found to be -27.16 ± 5.77 dB before treatment and -26.59 ± 5.96 dB after treatment ( = 0.005). The ganglion cell layer was 46.26 ± 12.87 µm before treatment and 52.47 ± 12.26 µm after treatment ( = 0.003). There was a significant improvement in Pattern VEP 120º P100 amplitude compared to that before the treatment (4.43 ± 2.42 µV) and that after the treatment (5.09 ± 2.86 µV) ( = 0.013). ERG latency measurements were 18.33 ± 15.39 µV before treatment and 20.87 ± 18.64 µV after treatment for scotopic 0.01 ( = 0.02). ERG latency measurements for scotopic 3.0 were 20.75 ± 26.31 µV before treatment and 23.10 ± 28.60 µV after treatment ( = 0.014).

Conclusion

Retinitis pigmentosa is a progressive, inherited disease that can result in severe vision loss. In retinitis pigmentosa, the application of bone marrow-derived mesenchymal stem cells by deep subtenon injection has positive effects on visual function. No systemic or ophthalmic side effects were detected in the patients during the 6-month follow-up period.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X293265240311120103
2024-03-19
2025-10-29
Loading full text...

Full text loading...

References

  1. LiuW. LiuS. LiP. YaoK. Retinitis pigmentosa: Progress in molecular pathology and biotherapeutical strategies.Int. J. Mol. Sci.2022239488310.3390/ijms2309488335563274
    [Google Scholar]
  2. WangA.L. KnightD.K. VuT.T. MehtaM.C. Retinitis pigmentosa: Review of current treatment.Int. Ophthalmol. Clin.201959126328010.1097/IIO.000000000000025630585930
    [Google Scholar]
  3. FahimA. Retinitis pigmentosa: Recent advances and future directions in diagnosis and management.Curr. Opin. Pediatr.201830672573310.1097/MOP.000000000000069030234647
    [Google Scholar]
  4. DiasM.F. JooK. KempJ.A. FialhoS.L. da Silva CunhaA.Jr WooS.J. KwonY.J. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives.Prog. Retin. Eye Res.20186310713110.1016/j.preteyeres.2017.10.00429097191
    [Google Scholar]
  5. JinZ.B. GaoM.L. DengW.L. WuK.C. SugitaS. MandaiM. TakahashiM. Stemming retinal regeneration with pluripotent stem cells.Prog. Retin. Eye Res.201969385610.1016/j.preteyeres.2018.11.00330419340
    [Google Scholar]
  6. DawsonW.W. TrickG.L. LitzkowC.A. Improved electrode for electroretinography.Invest. Ophthalmol. Vis. Sci.1979189988991478786
    [Google Scholar]
  7. OdomJ.V. BachM. BrigellM. HolderG.E. McCullochD.L. MizotaA. TormeneA.P. International Society for Clinical Electrophysiology of Vision ISCEV standard for clinical visual evoked potentials: (2016 update).Doc. Ophthalmol.201613311910.1007/s10633‑016‑9553‑y27443562
    [Google Scholar]
  8. RobsonA.G. FrishmanL.J. GriggJ. HamiltonR. JeffreyB.G. KondoM. LiS. McCullochD.L. ISCEV Standard for full- field clinical electroretinography (2022 update).Doc. Ophthalmol.2022144316517710.1007/s10633‑022‑09872‑035511377
    [Google Scholar]
  9. RobsonA.G. NilssonJ. LiS. JalaliS. FultonA.B. TormeneA.P. HolderG.E. BrodieS.E. ISCEV guide to visual electrodiagnostic procedures.Doc. Ophthalmol.2018136112610.1007/s10633‑017‑9621‑y29397523
    [Google Scholar]
  10. HeY. ZhangY. LiuX. GhazaryanE. LiY. XieJ. SuG. Recent advances of stem cell therapy for retinitis pigmentosa.Int. J. Mol. Sci.2014158144561447410.3390/ijms15081445625141102
    [Google Scholar]
  11. RaniS. RyanA.E. GriffinM.D. RitterT. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications.Mol. Ther.201523581282310.1038/mt.2015.4425868399
    [Google Scholar]
  12. BecherucciV. BacciG.M. MarzialiE. SodiA. BambiF. CaputoR. The new era of therapeutic strategies for the treatment of retinitis pigmentosa: A narrative review of pathomolecular mechanisms for the development of cell-based therapies.Biomedicines20231110265610.3390/biomedicines1110265637893030
    [Google Scholar]
  13. NgT.K. LamD.S.C. CheungH.S. Prospects of stem cells for retinal diseases.Asia Pac. J. Ophthalmol.201321576310.1097/APO.0b013e31827e3e5d26107868
    [Google Scholar]
  14. HuoD.M. DongF.T. YuW.H. GaoF. Differentiation of mesenchymal stem cell in the microenviroment of retinitis pigmentosa.Int. J. Ophthalmol.20103321621910.3980/j.issn.2222‑3959.2010.03.0822553557
    [Google Scholar]
  15. KuriyanA.E. AlbiniT.A. TownsendJ.H. RodriguezM. PandyaH.K. LeonardR.E.II ParrottM.B. RosenfeldP.J. FlynnH.W.Jr GoldbergJ.L. Vision loss after intravitreal injection of autologous “stem cells” for AMD.N. Engl. J. Med.2017376111047105310.1056/NEJMoa160958328296617
    [Google Scholar]
  16. HolanV. PalackaK. HermankovaB. Mesenchymal stem cell-based therapy for retinal degenerative diseases: Experimental models and clinical trials.Cells202110358810.3390/cells1003058833799995
    [Google Scholar]
  17. TezelT. RuffA. Retinal cell transplantation in retinitis pigmentosa.Taiwan J. Ophthalmol.202111433634710.4103/tjo.tjo_48_2135070661
    [Google Scholar]
  18. TuekprakhonA. SangkitpornS. TrinavaratA. PawestriA.R. VamvanijV. RuangchainikomM. LuksanapruksaP. PongpaksupasinP. KhorchaiA. DambuaA. BoonchuP. YodtupC. UiprasertkulM. SangkitpornS. AtchaneeyasakulL. Intravitreal autologous mesenchymal stem cell transplantation: A non-randomized phase I clinical trial in patients with retinitis pigmentosa.Stem Cell Res. Ther.20211215210.1186/s13287‑020‑02122‑733422139
    [Google Scholar]
  19. ÖzmertE. ArslanU. Management of retinitis pigmentosa by Wharton’s jelly derived mesenchymal stem cells: Preliminary clinical results.Stem Cell Res. Ther.20201112510.1186/s13287‑020‑1549‑631931872
    [Google Scholar]
  20. ÖzmertE. ArslanU. Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: Prospective analysis of 1-year results.Stem Cell Res. Ther.202011135310.1186/s13287‑020‑01870‑w32787913
    [Google Scholar]
  21. KahramanN.S. OnerA. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: A 6-month follow-up results of a phase 3 trial.Int. J. Ophthalmol.20201391423142910.18240/ijo.2020.09.1432953582
    [Google Scholar]
  22. OnerA. GonenZ.B. SinimN. CetinM. OzkulY. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: A phase I clinical safety study.Stem Cell Res. Ther.20167117810.1186/s13287‑016‑0432‑y27906070
    [Google Scholar]
  23. LimoliP.G. LimoliC.S.S. MoralesM.U. VingoloE.M. Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: clinical and rehabilitative prognostic aspects.Restor. Neurol. Neurosci.202038322323710.3233/RNN‑19097032310198
    [Google Scholar]
  24. ÖzkanB. Yılmaz TuğanB. HemşinlioğluC. Sır KarakuşG. ŞahinÖ. OvalıE. Suprachoroidal spheroidal mesenchymal stem cell implantation in retinitis pigmentosa: clinical results of 6 months follow-up.Stem Cell Res. Ther.202314125210.1186/s13287‑023‑03489‑z37705097
    [Google Scholar]
  25. HsuT.W. LuY.J. LinY.J. HuangY.T. HsiehL.H. WuB.H. LinY.C. ChenL.C. WangH.W. ChuangJ.C. FangY.Q. HuangC.C. Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury.Biomaterials202127212076510.1016/j.biomaterials.2021.12076533780686
    [Google Scholar]
  26. CornishE.E. VazeA. JamiesonR.V. GriggJ.R. The electroretinogram in the genomics era: Outer retinal disorders.Eye20213592406241810.1038/s41433‑021‑01659‑y34234290
    [Google Scholar]
  27. LuisJ. EastlakeK. LambW.D.B. LimbG.A. JayaramH. KhawP.T. Cell-based therapies for glaucoma.Transl. Vis. Sci. Technol.20231272310.1167/tvst.12.7.2337494052
    [Google Scholar]
  28. CuiH. HuY. WangZ.M. TanH.B. RongH. CuiH.P. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma.Clin. Interv. Aging201381467147010.2147/CIA.S4735024204132
    [Google Scholar]
  29. ZhangJ. WuS. JinZ.B. WangN. Stem cell-based regeneration and restoration for retinal ganglion cell: Recent advancements and current challenges.Biomolecules202111798710.3390/biom1107098734356611
    [Google Scholar]
  30. DingS. KumarS. MokP. Cellular reparative mechanisms of mesenchymal stem cells for retinal diseases.Int. J. Mol. Sci.2017188140610.3390/ijms1808140628788088
    [Google Scholar]
  31. AhmadiS. DadashpourM. AbriA. ZarghamiN. Long-term proliferation and delayed senescence of bone marrow-derived human mesenchymal stem cells on metformin co-embedded HA/Gel electrospun composite nanofibers.J. Drug Deliv. Sci. Technol.20238010407110.1016/j.jddst.2022.104071
    [Google Scholar]
  32. DadashpourM. MahmoudiH. RahimiZ. Janghorbanian PoodehR. MousazadehH. Firouzi-AmandiA. YazdaniY. Nezami AslA. AkbarzadehA. Sustained in vitro delivery of metformin-loaded mesoporous silica nanoparticles for delayed senescence and stemness preservation of adipose-derived stem cells.J. Drug Deliv. Sci. Technol.20238710476910.1016/j.jddst.2023.104769
    [Google Scholar]
  33. Serati-NouriH. RasoulpoorS. PourpiraliR. Sadeghi-SourehS. EsmaeilizadehN. DadashpourM. RoshangarL. ZarghamiN. In vitro expansion of human adipose-derived stem cells with delayed senescence through dual stage release of curcumin from mesoporous silica nanoparticles/electrospun nanofibers.Life Sci.202128511994710.1016/j.lfs.2021.11994734530016
    [Google Scholar]
  34. NejatiK. MehdiD. GhareghomiS. MostafaviE. Ebrahimi-KalanA. BiglariA. AlizadehE. MortazaviY. ZarghamiN. GDNF gene-engineered adipose-derived stem cells seeded Emu oil-loaded electrospun nanofibers for axonal regeneration following spinal cord injury.J. Drug Deliv. Sci. Technol.20206010209510.1016/j.jddst.2020.102095
    [Google Scholar]
  35. KrasilnikovaO.A. BaranovskiiD.S. YakimovaA.O. ArguchinskayaN. KiselA. SosinD. SulinaY. IvanovS.A. ShegayP.V. KaprinA.D. KlabukovI.D. Intraoperative creation of tissue-engineered grafts with minimally manipulated cells: New concept of bone tissue engineering in situ.Bioengineering202291170410.3390/bioengineering911070436421105
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X293265240311120103
Loading
/content/journals/cscr/10.2174/011574888X293265240311120103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test