Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Exosomes derived from Adipose-Derived Stem Cells (ADSCs-Exo) have been implicated in the enhancement of wound repair in Diabetic Foot Ulcers (DFU). Objective: The current research was designed to explore the therapeutic potential and underlying mechanisms of ADSCs-Exo modified with microRNA-125b (miR-125b) in the context of DFU.

Methods

Rat models with DFU and human umbilical vein endothelial cells (HUVECs) subjected to high glucose (HG) conditions served as experimental systems and were administered miR-125b-engineered ADSCs-Exo. Then, the expressions of CD34, Ki-67, angiogenesis-related factors (VEGF and TGFβ-1), angiogenesis inhibitor DLL-4, and inflammation-related proteins (TLR-4 and IL-6) were detected.

Results

MiR-125b was upregulated in ADSCs-Exo. MiR-125b-mimics transfection in ADSCs-Exo reduced inflammatory infiltration and promoted granulation formation and wound healing in wound tissues. MiR-125b-mimics-modified ADSCs-Exo injection increased the expression of CD34, Ki-67, VEGF, and TGFβ-1, whereas decreased the expression of DLL-4, TLR-4, and IL-6 in wound tissues of DFU rats. In addition, miR-125b-mimics-ADSCs-Exo injection reversed the negative effects of HG on the proliferation, migration, and angiogenesis of HUVECs, as well as the positive effects of cell apoptosis. Moreover, miR-125b-inhibitor-ADSCs-Exo injection had the opposite effects to miR-125b-mimics-ADSCs-Exo.

Conclusion

ADSCs-Exo promoted wound healing of DFU rats, especially when overexpressing miR-125b.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X287173240415050555
2024-04-24
2025-08-13
Loading full text...

Full text loading...

References

  1. ZhangP. LuJ. JingY. TangS. ZhuD. BiY. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis.Ann. Med.201749210611610.1080/07853890.2016.123193227585063
    [Google Scholar]
  2. DavisF.M. KimballA. BoniakowskiA. GallagherK. Dysfunctional wound healing in diabetic foot ulcers: New crossroads.Curr. Diab. Rep.2018181210.1007/s11892‑018‑0970‑z29362914
    [Google Scholar]
  3. ZubairM. AhmadJ. Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review.Rev. Endocr. Metab. Disord.201920220721710.1007/s11154‑019‑09492‑130937614
    [Google Scholar]
  4. Perez-FavilaA. Martinez-FierroM.L. Rodriguez-LazaldeJ.G. Cid-BaezM.A. Zamudio-OsunaM.J. Martinez-BlancoM.R. Mollinedo-MontañoF.E. Rodriguez-SanchezI.P. Castañeda-MirandaR. Garza-VelozI. Current therapeutic strategies in diabetic foot ulcers.Medicina2019551171410.3390/medicina5511071431731539
    [Google Scholar]
  5. TavernaS. PucciM. AlessandroR. Extracellular vesicles: Small bricks for tissue repair/regeneration.Ann. Transl. Med.2017548310.21037/atm.2017.01.5328275628
    [Google Scholar]
  6. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  7. LiangY. DuanL. LuJ. XiaJ. Engineering exosomes for targeted drug delivery.Theranostics20211173183319510.7150/thno.5257033537081
    [Google Scholar]
  8. FanB. LiC. SzaladA. WangL. PanW. ZhangR. ChoppM. ZhangZ.G. LiuX.S. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes.Diabetologia202063243144310.1007/s00125‑019‑05043‑031740984
    [Google Scholar]
  9. SongJ. LiuJ. CuiC. HuH. ZangN. YangM. YangJ. ZouY. LiJ. WangL. HeQ. GuoX. ZhaoR. YanF. LiuF. HouX. SunZ. ChenL. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy.J. Cachexia Sarcopenia Muscle202314291592910.1002/jcsm.1317736708027
    [Google Scholar]
  10. SunY. TaoQ. WuX. ZhangL. LiuQ. WangL. The utility of exosomes in diagnosis and therapy of diabetes mellitus and associated complications.Front. Endocrinol.20211275658110.3389/fendo.2021.75658134764939
    [Google Scholar]
  11. XiongJ. HuH. GuoR. WangH. JiangH. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications.Front. Endocrinol.20211264623310.3389/fendo.2021.64623333995278
    [Google Scholar]
  12. PlikusM.V. Guerrero-JuarezC.F. ItoM. LiY.R. DedhiaP.H. ZhengY. ShaoM. GayD.L. RamosR. HsiT.C. OhJ.W. WangX. RamirezA. KonopelskiS.E. ElzeinA. WangA. SupapannachartR.J. LeeH.L. LimC.H. NaceA. GuoA. TreffeisenE. AndlT. RamirezR.N. MuradR. OffermannsS. MetzgerD. ChambonP. WidgerowA.D. TuanT.L. MortazaviA. GuptaR.K. HamiltonB.A. MillarS.E. SealeP. PearW.S. LazarM.A. CotsarelisG. Regeneration of fat cells from myofibroblasts during wound healing.Science2017355632674875210.1126/science.aai879228059714
    [Google Scholar]
  13. AnY. LinS. TanX. ZhuS. NieF. ZhenY. GuL. ZhangC. WangB. WeiW. LiD. WuJ. Exosomes from adipose-derived stem cells and application to skin wound healing.Cell Prolif.2021543e1299310.1111/cpr.1299333458899
    [Google Scholar]
  14. LiS. SunJ. YangJ. YangY. DingH. YuB. MaK. ChenM. Gelatin methacryloyl (GelMA) loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells(ADSCs) conditioned medium promotes wound healing and vascular regeneration in aged skin.Biomater. Res.20232711110.1186/s40824‑023‑00352‑336782342
    [Google Scholar]
  15. HeL. ZhuC. JiaJ. HaoX.Y. YuX.Y. LiuX.Y. ShuM.G. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway.Biosci. Rep.2020405BSR2019254910.1042/BSR2019254932342982
    [Google Scholar]
  16. HassanshahiA. HassanshahiM. KhabbaziS. Hosseini-KhahZ. PeymanfarY. GhalamkariS. SuY.W. XianC.J. Adipose-derived stem cells for wound healing.J. Cell. Physiol.201923467903791410.1002/jcp.2792230515810
    [Google Scholar]
  17. MaziniL. RochetteL. AdmouB. AmalS. MalkaG. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing.Int. J. Mol. Sci.2020214130610.3390/ijms2104130632075181
    [Google Scholar]
  18. QuY. ZhangQ. CaiX. LiF. MaZ. XuM. LuL. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation.J. Cell. Mol. Med.201721102491250210.1111/jcmm.1317028382720
    [Google Scholar]
  19. JinJ. ShiY. GongJ. ZhaoL. LiY. HeQ. HuangH. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte.Stem Cell Res. Ther.20191019510.1186/s13287‑019‑1177‑130876481
    [Google Scholar]
  20. ZhangW. BaiX. ZhaoB. LiY. ZhangY. LiZ. WangX. LuoL. HanF. ZhangJ. HanS. CaiW. SuL. TaoK. ShiJ. HuD. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway.Exp. Cell Res.2018370233334210.1016/j.yexcr.2018.06.03529964051
    [Google Scholar]
  21. LiangZ.H. PanN.F. LinS.S. QiuZ.Y. LiangP. WangJ. ZhangZ. PanY.C. Exosomes from mmu_circ_0001052-modified adipose-derived stem cells promote angiogenesis of DFU via miR-106a-5p and FGF4/p38MAPK pathway.Stem Cell Res. Ther.202213133610.1186/s13287‑022‑03015‑735870977
    [Google Scholar]
  22. WangP. TheocharidisG. VlachosI.S. KounasK. LobaoA. ShuB. WuB. XieJ. HuZ. QiS. TangB. ZhuJ. VevesA. Exosomes derived from epidermal stem cells improve diabetic wound healing.J. Invest. Dermatol.2022142925082517.e1310.1016/j.jid.2022.01.03035181300
    [Google Scholar]
  23. YanC. ChenJ. WangC. YuanM. KangY. WuZ. LiW. ZhangG. MachensH.G. RinkevichY. ChenZ. YangX. XuX. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis.Drug Deliv.202229121422810.1080/10717544.2021.202369934985397
    [Google Scholar]
  24. HuangK. DongS. LiW. XieZ. The expression and regulation of microRNA-125b in cancers.Acta Biochim. Biophys. Sin.2013451080380510.1093/abbs/gmt07323800395
    [Google Scholar]
  25. MatuszykJ. KlopotowskaD. miR-125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy.J. Cell. Physiol.2020235106335634410.1002/jcp.2961032052874
    [Google Scholar]
  26. BuQ. YouF. PanG. YuanQ. CuiT. HaoL. ZhangJ. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD.Biomed. Pharmacother.20178844344810.1016/j.biopha.2016.11.09028122310
    [Google Scholar]
  27. LiY. WangY. FanH. ZhangZ. LiN. miR-125b-5p inhibits breast cancer cell proliferation, migration and invasion by targeting KIAA1522.Biochem. Biophys. Res. Commun.2018504127728210.1016/j.bbrc.2018.08.17230177391
    [Google Scholar]
  28. TanQ. MaJ. ZhangH. WuX. LiQ. ZuoX. JiangY. LiuH. YanL. miR-125b-5p upregulation by TRIM28 induces cisplatin resistance in non-small cell lung cancer through CREB1 inhibition.BMC Pulm. Med.202222146910.1186/s12890‑022‑02272‑936476351
    [Google Scholar]
  29. WangY. FangJ. GuF. MiR-125b-5p/TPD52 axis affects proliferation, migration and invasion of breast cancer cells.Mol. Biotechnol.20226491003101210.1007/s12033‑022‑00475‑335320453
    [Google Scholar]
  30. ZhangJ. YangW. XiaoY. ShanL. MiR-125b inhibits cell proliferation and induces apoptosis in human colon cancer SW480 cells via targeting STAT3.Recent Patents Anticancer Drug Discov.202217218719410.2174/157489281666621070816503734238196
    [Google Scholar]
  31. ChenY. LiZ. ChenX. ZhangS. Long non-coding RNAs: From disease code to drug role.Acta Pharm. Sin. B202111234035410.1016/j.apsb.2020.10.00133643816
    [Google Scholar]
  32. ZhangY. PanY. LiuY. LiX. TangL. DuanM. LiJ. ZhangG. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition.Stem Cell Res. Ther.202112143410.1186/s13287‑021‑02517‑034344478
    [Google Scholar]
  33. XiaW. LiM. JiangX. HuangX. GuS. YeJ. ZhuL. HouM. ZanT. Young fibroblast-derived exosomal microRNA-125b transfers beneficial effects on aged cutaneous wound healing.J. Nanobiotechnol202220114410.1186/s12951‑022‑01348‑235305652
    [Google Scholar]
  34. ShaoX. QinJ. WanC. ChengJ. WangL. AiG. ChengZ. TongX. ADSC exosomes mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p.Front. Genet.20211267964310.3389/fgene.2021.67964334178037
    [Google Scholar]
  35. LinZ. ChenY. LinZ. ChenC. DongY. Overexpressing PRMT1 inhibits proliferation and invasion in pancreatic cancer by inverse correlation of ZEB1.IUBMB Life201870101032103910.1002/iub.191730194893
    [Google Scholar]
  36. MathiyalaganP. LiangY. KimD. MisenerS. ThorneT. KamideC.E. KlyachkoE. LosordoD.W. HajjarR.J. SahooS. Angiogenic mechanisms of human CD34 + stem cell exosomes in the repair of ischemic hindlimb.Circ. Res.201712091466147610.1161/CIRCRESAHA.116.31055728298297
    [Google Scholar]
  37. McDermottK. FangM. BoultonA.J.M. SelvinE. HicksC.W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers.Diabetes Care202346120922110.2337/dci22‑004336548709
    [Google Scholar]
  38. WangX. MengL. ZhangJ. ZouL. JiaZ. HanX. ZhaoL. SongM. ZhangZ. ZongJ. WangS. LuM. Identification of angiogenesis-related genes in diabetic foot ulcer using machine learning algorithms.Heliyon2023912e2300310.1016/j.heliyon.2023.e2300338076120
    [Google Scholar]
  39. ZhaoQ. XuJ. HanX. ZhangZ. QuJ. ChengZ. Growth differentiation factor 10 induces angiogenesis to promote wound healing in rats with diabetic foot ulcers by activating TGF-β1/Smad3 signaling pathway.Front. Endocrinol.202313101301810.3389/fendo.2022.101301836714584
    [Google Scholar]
  40. DaiJ. SuY. ZhongS. CongL. LiuB. YangJ. TaoY. HeZ. ChenC. JiangY. Exosomes: Key players in cancer and potential therapeutic strategy.Signal Transduct. Target. Ther.20205114510.1038/s41392‑020‑00261‑032759948
    [Google Scholar]
  41. PegtelDM GouldSJ Exosomes.Annu. Rev. Biochem.201988487514
    [Google Scholar]
  42. SamantaS. RajasinghS. DrososN. ZhouZ. DawnB. RajasinghJ. Exosomes: New molecular targets of diseases.Acta Pharmacol. Sin.201839450151310.1038/aps.2017.16229219950
    [Google Scholar]
  43. ZhengT. ShaoW. TianJ. Exosomes derived from ADSCs containing miR-378 promotes wound healing by targeting caspase-3.J. Biochem. Mol. Toxicol.20213510e2288110.1002/jbt.2288134392575
    [Google Scholar]
  44. LiX. XieX. LianW. ShiR. HanS. ZhangH. LuL. LiM. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model.Exp. Mol. Med.201850411410.1038/s12276‑018‑0058‑529651102
    [Google Scholar]
  45. FengJ. DongC. LongY. MaiL. RenM. LiL. ZhouT. YangZ. MaJ. YanL. YangX. GaoG. QiW. Elevated Kallikrein-binding protein in diabetes impairs wound healing through inducing macrophage M1 polarization.Cell Commun. Signal.20191716010.1186/s12964‑019‑0376‑931182110
    [Google Scholar]
  46. RenJ. ZhuB. GuG. ZhangW. LiJ. WangH. WangM. SongX. WeiZ. FengS. Schwann cell-derived exosomes containing MFG-E8 modify macrophage/microglial polarization for attenuating inflammation via the SOCS3/STAT3 pathway after spinal cord injury.Cell Death Dis.20231417010.1038/s41419‑023‑05607‑436717543
    [Google Scholar]
  47. DengF. YanJ. LuJ. LuoM. XiaP. LiuS. WangX. ZhiF. LiuD. M2 macrophage-derived exosomal miR-590-3p attenuates dss-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/ β-catenin signalling axis.J. Crohn’s Colitis202115466567710.1093/ecco‑jcc/jjaa21433075119
    [Google Scholar]
  48. HuY. RaoS.S. WangZ.X. CaoJ. TanY.J. LuoJ. LiH.M. ZhangW.S. ChenC.Y. XieH. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function.Theranostics20188116918410.7150/thno.2123429290800
    [Google Scholar]
  49. VuN.B. NguyenH.T. PalumboR. PellicanoR. FagooneeS. PhamP.V. Stem cell-derived exosomes for wound healing: Current status and promising directions.Minerva Med.2021112338440010.23736/S0026‑4806.20.07205‑533263376
    [Google Scholar]
  50. WangC. WangM. XuT. ZhangX. LinC. GaoW. XuH. LeiB. MaoC. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration.Theranostics201991657610.7150/thno.2976630662554
    [Google Scholar]
  51. ZhouC. ZhangB. YangY. JiangQ. LiT. GongJ. TangH. ZhangQ. Stem cell-derived exosomes: Emerging therapeutic opportunities for wound healing.Stem Cell Res. Ther.202314110710.1186/s13287‑023‑03345‑037101197
    [Google Scholar]
  52. ZhouY. ZhangX.L. LuS.T. ZhangN.Y. ZhangH.J. ZhangJ. ZhangJ. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration.Stem Cell Res. Ther.202213140710.1186/s13287‑022‑02980‑335941707
    [Google Scholar]
  53. ZhangQ. YuK. CaoY. LuoY. LiuY. ZhaoC. miR-125b promotes the NF-κB-mediated inflammatory response in NAFLD via directly targeting TNFAIP3.Life Sci.202127011907110.1016/j.lfs.2021.11907133515562
    [Google Scholar]
  54. ValmikiS. AhujaV. PuriN. PaulJ. miR-125b and miR-223 contribute to inflammation by targeting the key molecules of NFκB pathway.Front. Med.2020631310.3389/fmed.2019.0031332039213
    [Google Scholar]
  55. HadiN. NamaziF. KetabchiF. KhosravianF. NateghiB. TalebiA. BaghiM. MianesazH. ZareF. SalehiM. miR-574, miR-499, miR-125b, miR-106a, and miR-9 potentially target TGFBR-1 and TGFBR-2 genes involving in inflammatory response pathway: Potential novel biomarkers for chronic lymphocytic leukemia.Pathol. Res. Pract.202223815407710.1016/j.prp.2022.15407736037658
    [Google Scholar]
  56. YangZ. ChenZ. WangC. HuangP. LuoM. ZhouR. STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop affects psoriasis pathogenesis via regulating human keratinocyte proliferation.Cytokine202114415553510.1016/j.cyto.2021.15553533994260
    [Google Scholar]
  57. ChatterjeeS. MukherjeeI. BhattacharjeeS. BoseM. ChakrabartiS. BhattacharyyaS.N. Target-dependent coordinated biogenesis of secondary MicroRNAs by miR-146a balances macrophage activation processes.Mol. Cell. Biol.2022424e00452-2110.1128/mcb.00452‑2135311564
    [Google Scholar]
  58. EssandohK. LiY. HuoJ. FanG.C. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response.Shock201646212213110.1097/SHK.000000000000060426954942
    [Google Scholar]
  59. LiuG. WanQ. LiJ. HuX. GuX. XuS. Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2).Cell Cycle202019223182319410.1080/15384101.2020.183879233121314
    [Google Scholar]
  60. PortouM.J. YuR. BakerD. XuS. AbrahamD. TsuiJ. Hyperglycaemia and ischaemia impair wound healing via toll-like receptor 4 pathway activation in vitro and in an experimental murine model.Eur. J. Vasc. Endovasc. Surg.202059111712710.1016/j.ejvs.2019.06.01831732468
    [Google Scholar]
  61. ZhuW. XuR. DuJ. FuY. LiS. ZhangP. LiuL. JiangH. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw.FASEB J.20193345208521910.1096/fj.201801791RR30624969
    [Google Scholar]
  62. JiangD. LiangJ. NobleP.W. Hyaluronan in tissue injury and repair.Annu. Rev. Cell Dev. Biol.200723143546110.1146/annurev.cellbio.23.090506.12333717506690
    [Google Scholar]
  63. LeeJ.S. FrevertC.W. Matute-BelloG. WurfelM.M. WongV.A. LinS.M. RuzinskiJ. MongovinS. GoodmanR.B. MartinT.R. TLR-4 pathway mediates the inflammatory response but not bacterial elimination in E. coli pneumonia.Am. J. Physiol. Lung Cell. Mol. Physiol.20052895L731L73810.1152/ajplung.00196.200516024722
    [Google Scholar]
  64. HiranoT. IL-6 in inflammation, autoimmunity and cancer.Int. Immunol.202133312714810.1093/intimm/dxaa07833337480
    [Google Scholar]
  65. LinY. WenL. Inflammatory response following diffuse axonal injury.Int. J. Med. Sci.201310551552110.7150/ijms.542323532682
    [Google Scholar]
  66. XuZ. LiuG. LiuP. HuY. ChenY. FangY. SunG. HuangH. WuJ. Hyaluronic acid-based glucose-responsive antioxidant hydrogel platform for enhanced diabetic wound repair.Acta Biomater.202214714715710.1016/j.actbio.2022.05.04735649507
    [Google Scholar]
  67. ZhangY. JiaP. WangK. ZhangY. LvY. FanP. YangL. ZhangS. WangT. ZhaoJ. LvH. ChenX. LiuY. WeiH. ZhangP. Lactate modulates microglial inflammatory responses after oxygen-glucose deprivation through HIF-1α-mediated inhibition of NF-κB.Brain Res. Bull.202319511310.1016/j.brainresbull.2023.02.00236746287
    [Google Scholar]
  68. TodorovaD. SimonciniS. LacroixR. SabatierF. Dignat-GeorgeF. Extracellular vesicles in angiogenesis.Circ. Res.2017120101658167310.1161/CIRCRESAHA.117.30968128495996
    [Google Scholar]
  69. GuanY. NiuH. LiuZ. DangY. ShenJ. ZayedM. MaL. GuanJ. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation.Sci. Adv.2021735eabj015310.1126/sciadv.abj015334452918
    [Google Scholar]
  70. GuerraA. BelinhaJ. JorgeR.N. Modelling skin wound healing angiogenesis: A review.J. Theor. Biol.201845911710.1016/j.jtbi.2018.09.02030240579
    [Google Scholar]
  71. VeithA.P. HendersonK. SpencerA. SligarA.D. BakerA.B. Therapeutic strategies for enhancing angiogenesis in wound healing.Adv. Drug Deliv. Rev.20191469712510.1016/j.addr.2018.09.01030267742
    [Google Scholar]
  72. OkonkwoU.A. ChenL. MaD. HaywoodV.A. BarakatM. UraoN. DiPietroL.A. Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing.PLoS One2020154e023196210.1371/journal.pone.023196232324828
    [Google Scholar]
  73. LuoL. AnY. GengK. WanS. ZhangF. TanX. JiangZ. XuY. High glucose-induced endothelial STING activation inhibits diabetic wound healing through impairment of angiogenesis.Biochem. Biophys. Res. Commun.2023668828910.1016/j.bbrc.2023.05.08137245293
    [Google Scholar]
  74. YuQ. QiaoG. WangM. YuL. SunY. ShiH. MaT. Stem cell-based therapy for diabetic foot ulcers.Front. Cell Dev. Biol.20221081226210.3389/fcell.2022.81226235178389
    [Google Scholar]
  75. ZhengX. NarayananS. SunkariV.G. EliassonS. BotusanI.R. GrünlerJ. CatrinaA.I. RadtkeF. XuC. ZhaoA. EkbergN.R. LendahlU. CatrinaS.B. Triggering of a Dll4–Notch1 loop impairs wound healing in diabetes.Proc. Natl. Acad. Sci. USA2019116146985699410.1073/pnas.190035111630886104
    [Google Scholar]
  76. PengB. ThengP.Y. LeM.T.N. Essential functions of miR-125b in cancer.Cell Prolif.2021542e1291310.1111/cpr.1291333332677
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X287173240415050555
Loading
/content/journals/cscr/10.2174/011574888X287173240415050555
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test