Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

The heavy burden of cardiovascular diseases demands innovative therapeutic strategies dealing with cardiomyocyte loss. Cardiac Stem Cells (CSCs) are renewable cells in the myocardium with differentiation and endocrine functions. However, their functions are significantly inhibited in conditions of severe hypoxia or inflammation. The mechanism of hypoxia affecting CSCs is not clear. Interleukin-6 (IL-6) appears active in both hypoxic and inflammatory microenvironments. The aim of this study was to explore whether IL-6 is related to CSC apoptosis and autophagy under severe hypoxia.

Methods

In this study, rat CSCs were extracted by alternate digestion. The interaction of miR-98 and IL-6 mRNA was detected by the dual luciferase method, and qPCR was applied to confirm the effect of miR-98 on IL-6 expression. The effect of IL-6 on CSC apoptosis was measured by flow cytometry and the effect of IL-6 on CSC autophagy by transmission electron microscopy. The western blot method was applied to detect the effect of IL-6 on the expressions of proteins related to apoptosis and autophagy. ANOVA and Dunnett T3's test were employed in the statistical analysis. When < 0.05, the difference was significant.

Results

Under severe hypoxia conditions, IL-6 increased CSC apoptosis and decreased p-STAT3 expression significantly. CSC apoptosis increased significantly after inhibition of the STAT3 signaling pathway under severe hypoxia. IL-6 could also significantly inhibit CSCs’ autophagy and block their autophagy flow under severe hypoxic conditions. Meanwhile, it was confirmed that miR-98 had a binding site on IL-6 mRNA and miR-98 significantly inhibited IL-6 mRNA expression in CSCs under severe hypoxic conditions.

Conclusion

miR-98/IL-6/STAT3 has been found to be involved in the regulation of CSCs’ apoptosis and autophagy under severe hypoxic conditions and there might be a mutual linkage between CSCs’ apoptosis and their autophagy.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X294637240517050849
2024-05-29
2025-11-04
Loading full text...

Full text loading...

References

  1. MehannaR.A. EssawyM.M. BarkatM.A. AwaadA.K. ThabetE.H. HamedH.A. ElkafrawyH. KhalilN.A. SallamA. KholiefM.A. IbrahimS.S. MouradG.M. Cardiac stem cells: Current knowledge and future prospects.World J. Stem Cells202214114010.4252/wjsc.v14.i1.135126826
    [Google Scholar]
  2. ChughA.R. BeacheG.M. LoughranJ.H. MewtonN. ElmoreJ.B. KajsturaJ. PappasP. TatoolesA. StoddardM.F. LimaJ.A.C. SlaughterM.S. AnversaP. BolliR. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance.Circulation201212611_suppl_1Suppl. 1S54S6410.1161/CIRCULATIONAHA.112.09262722965994
    [Google Scholar]
  3. MakkarR.R. SmithR.R. ChengK. MalliarasK. ThomsonL.E.J. BermanD. CzerL.S.C. MarbánL. MendizabalA. JohnstonP.V. RussellS.D. SchuleriK.H. LardoA.C. GerstenblithG. MarbánE. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial.Lancet2012379981989590410.1016/S0140‑6736(12)60195‑022336189
    [Google Scholar]
  4. LiQ. GuoY. OuQ. ChenN. WuW.J. YuanF. O’BrienE. WangT. LuoL. HuntG.N. ZhuX. BolliR. Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models.Basic Res. Cardiol.2011106584986410.1007/s00395‑011‑0180‑121516491
    [Google Scholar]
  5. BolliR. MitraniR.D. HareJ.M. PepineC.J. PerinE.C. WillersonJ.T. TraverseJ.H. HenryT.D. YangP.C. MurphyM.P. MarchK.L. SchulmanI.H. IkramS. LeeD.P. O’BrienC. LimaJ.A. OstovanehM.R. Ambale-VenkateshB. LewisG. KhanA. BacallaoK. ValasakiK. LongsomboonB. GeeA.P. RichmanS. TaylorD.A. LaiD. SayreS.L. BettencourtJ. VojvodicR.W. CohenM.L. SimpsonL. AguilarD. LoghinC. MoyéL. EbertR.F. DavisB.R. SimariR.D. Cardiovascular Cell Therapy Research Network (CCTRN) A Phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the CCTRN CONCERT-HF trial.Eur. J. Heart Fail.202123466167410.1002/ejhf.217833811444
    [Google Scholar]
  6. MakkarR.R. KereiakesD.J. AguirreF. KowalchukG. ChakravartyT. MalliarasK. FrancisG.S. PovsicT.J. SchatzR. TraverseJ.H. PogodaJ.M. SmithR.R. MarbánL. AscheimD.D. OstovanehM.R. LimaJ.A.C. DeMariaA. MarbánE. HenryT.D. Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): A randomized, placebo-controlled, double-blinded trial.Eur. Heart J.202041363451345810.1093/eurheartj/ehaa54132749459
    [Google Scholar]
  7. TavassolyI. ParmarJ. Shajahan-HaqA.N. ClarkeR. BaumannW.T. TysonJ.J. Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells.CPT Pharmacometrics Syst. Pharmacol.20154426327210.1002/psp4.2926225250
    [Google Scholar]
  8. HuangC. AndresA.M. RatliffE.P. HernandezG. LeeP. GottliebR.A. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1.PLoS One201166e2097510.1371/journal.pone.002097521687634
    [Google Scholar]
  9. Perez-PinzonM.A. StetlerR.A. FiskumG. Novel mitochondrial targets for neuroprotection.J. Cereb. Blood Flow Metab.20123271362137610.1038/jcbfm.2012.3222453628
    [Google Scholar]
  10. HetzC. ThielenP. MatusS. NassifM. CourtF. KiffinR. MartinezG. CuervoA.M. BrownR.H. GlimcherL.H. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy.Genes Dev.200923192294230610.1101/gad.183070919762508
    [Google Scholar]
  11. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. The hallmarks of aging.Cell201315361194121710.1016/j.cell.2013.05.03923746838
    [Google Scholar]
  12. HeC. BassikM.C. MoresiV. SunK. WeiY. ZouZ. AnZ. LohJ. FisherJ. SunQ. KorsmeyerS. PackerM. MayH.I. HillJ.A. VirginH.W. GilpinC. XiaoG. Bassel-DubyR. SchererP.E. LevineB. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis.Nature2012481738251151510.1038/nature1075822258505
    [Google Scholar]
  13. RubinszteinD.C. MariñoG. KroemerG. Autophagy and aging.Cell2011146568269510.1016/j.cell.2011.07.03021884931
    [Google Scholar]
  14. AmirM. ZhaoE. FontanaL. RosenbergH. TanakaK. GaoG. CzajaM.J. Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation.Cell Death Differ.201320787888710.1038/cdd.2013.2123519075
    [Google Scholar]
  15. YoungM.M. TakahashiY. KhanO. ParkS. HoriT. YunJ. SharmaA.K. AminS. HuC.D. ZhangJ. KesterM. WangH.G. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis.J. Biol. Chem.201228715124551246810.1074/jbc.M111.30910422362782
    [Google Scholar]
  16. NezisI.P. ShravageB.V. SagonaA.P. LamarkT. BjørkøyG. JohansenT. RustenT.E. BrechA. BaehreckeE.H. StenmarkH. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis.J. Cell Biol.2010190452353110.1083/jcb.20100203520713604
    [Google Scholar]
  17. YouleR.J. NarendraD.P. Mechanisms of mitophagy.Nat. Rev. Mol. Cell Biol.201112191410.1038/nrm302821179058
    [Google Scholar]
  18. OralO. Oz-ArslanD. ItahZ. NaghaviA. DeveciR. KaracaliS. GozuacikD. Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death.Apoptosis201217881082010.1007/s10495‑012‑0735‑022644571
    [Google Scholar]
  19. LuoS. RubinszteinD.C. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL.Cell Death Differ.201017226827710.1038/cdd.2009.12119713971
    [Google Scholar]
  20. WirawanE. Vande WalleL. KersseK. CornelisS. ClaerhoutS. VanoverbergheI. RoelandtR. De RyckeR. VerspurtenJ. DeclercqW. AgostinisP. Vanden BergheT. LippensS. VandenabeeleP. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria.Cell Death Dis.201011e1810.1038/cddis.2009.1621364619
    [Google Scholar]
  21. WuJ. NiuJ. LiX. LiY. WangX. LinJ. ZhangF. Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2.Cell. Physiol. Biochem.20143351467147410.1159/00035871124854431
    [Google Scholar]
  22. ZhangQ. YangY.J. WangH. DongQ.T. WangT.J. QianH.Y. XuH. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway.Stem Cells Dev.20122181321133210.1089/scd.2011.068422356678
    [Google Scholar]
  23. LiL. LiL. ZhangZ. JiangZ. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway.Acta Biochim. Biophys. Sin. (Shanghai)201547536236710.1093/abbs/gmv01425736405
    [Google Scholar]
  24. DongW. ZhangP. FuY. GeJ. ChengJ. YuanH. JiangH. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells.J. Cell. Physiol.2015230368069010.1002/jcp.2479225200657
    [Google Scholar]
  25. Mas-BarguesC. Sanz-RosJ. Román-DomínguezA. InglésM. Gimeno-MallenchL. El AlamiM. Viña-AlmuniaJ. GambiniJ. ViñaJ. BorrásC. Relevance of oxygen concentration in stem cell culture for regenerative medicine.Int. J. Mol. Sci.2019205119510.3390/ijms2005119530857245
    [Google Scholar]
  26. PanH. CaiN. LiM. LiuG.H. Izpisua BelmonteJ.C. Autophagic control of cell ‘stemness’.EMBO Mol. Med.20135332733110.1002/emmm.20120199923495139
    [Google Scholar]
  27. MokhtariB. BadalzadehR. AboutalebN. Modulation of autophagy as the target of mesenchymal stem cells-derived conditioned medium in rat model of myocardial ischemia/reperfusion injury.Mol. Biol. Rep.20214843337334810.1007/s11033‑021‑06359‑033895973
    [Google Scholar]
  28. LiZ. WangY. WangH. WuJ. TanY. Rapamycin-preactivated autophagy enhances survival and differentiation of mesenchymal stem cells after transplantation into infarcted myocardium.Stem Cell Rev. Rep.202016234435610.1007/s12015‑020‑09952‑131927699
    [Google Scholar]
  29. ZhangZ. YangC. ShenM. YangM. JinZ. DingL. JiangW. YangJ. ChenH. CaoF. HuT. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction.Stem Cell Res. Ther.2017818910.1186/s13287‑017‑0543‑028420436
    [Google Scholar]
  30. HamO. LeeS.Y. LeeC.Y. ParkJ.H. LeeJ. SeoH.H. ChaM.J. ChoiE. KimS. HwangK.C. let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3.Stem Cell Res. Ther.20156114710.1186/s13287‑015‑0134‑x26296645
    [Google Scholar]
  31. MaW. DingF. WangX. HuangQ. ZhangL. BiC. HuaB. YuanY. HanZ. JinM. LiuT. YuY. CaiB. DuZ. By targeting Atg7 MicroRNA-143 mediates oxidative stress-induced autophagy of c-kit+ mouse cardiac progenitor cells.EBioMedicine20183218219110.1016/j.ebiom.2018.05.02129858017
    [Google Scholar]
  32. ShiX LiW LiuH YinD ZhaoJ. The ROS/NF-κB/NR4A2 pathway is involved in H2O2 induced apoptosis of resident cardiac stem cells via autophagy.Oncotarget2017844776347764810.18632/oncotarget,20747
    [Google Scholar]
  33. ShiX. LiW. LiuH. YinD. ZhaoJ. β-Cyclodextrin induces the differentiation of resident cardiac stem cells to cardiomyocytes through autophagy.Biochim. Biophys. Acta Mol. Cell Res.2017186481425143410.1016/j.bbamcr.2017.05.01228522298
    [Google Scholar]
  34. ZhangJ. LiuJ. HuangY. ChangJ.Y.F. LiuL. McKeehanW.L. MartinJ.F. WangF. FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity.Circ. Res.20121104e29e3910.1161/CIRCRESAHA.111.25595022207710
    [Google Scholar]
  35. ZhangJ. LiuJ. LiuL. McKeehanW.L. WangF. The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy.Autophagy20128469069110.4161/auto.1929022302007
    [Google Scholar]
  36. YooJ. KimD. ParkJ. KimY.K. Park ChooH.Y. WooH.A. Novel small molecule inhibitors targeting the IL-6/STAT3 pathway or IL-1β.Molecules2022279269610.3390/molecules2709269635566047
    [Google Scholar]
  37. YaoX. HuangJ. ZhongH. ShenN. FaggioniR. FungM. YaoY. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers.Pharmacol. Ther.2014141212513910.1016/j.pharmthera.2013.09.00424076269
    [Google Scholar]
  38. Rose-JohnS. JenkinsB.J. GarbersC. MollJ.M. SchellerJ. Targeting IL-6 trans-signalling: past, present and future prospects.Nat. Rev. Immunol.2023231066668110.1038/s41577‑023‑00856‑y37069261
    [Google Scholar]
  39. SwaroopAK NegiP KarA MariappanE NatarajanJ NambooriP K K SelvarajJ. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs.Cytokine Growth Factor Rev.202438220583
    [Google Scholar]
  40. MaY. ZhuY. ShangL. QiuY. ShenN. WangJ. AdamT. WeiW. SongQ. LiJ. WichaM.S. LuoM. LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling.Oncogene202342181419143710.1038/s41388‑023‑02652‑336922677
    [Google Scholar]
  41. PengC.Y. YuC.C. HuangC.C. LiaoY.W. HsiehP.L. ChuP.M. YuC.H. LinS.S. Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas.J. Formos. Med. Assoc.20221211515710.1016/j.jfma.2021.01.00933551310
    [Google Scholar]
  42. LiuT. LiX. WangT. ChenX. ZhangS. LiaoJ. WangW. ZouX. ZhouG. Kartogenin mediates cartilage regeneration by stimulating the IL-6/Stat3-dependent proliferation of cartilage stem/progenitor cells.Biochem. Biophys. Res. Commun.2020532338539210.1016/j.bbrc.2020.08.05932888652
    [Google Scholar]
  43. LinL. HuangK. GuoW. ZhouC. WangG. ZhaoQ. Conditioned medium of the osteosarcoma cell line U2OS induces hBMSCs to exhibit characteristics of carcinoma-associated fibroblasts via activation of IL-6/STAT3 signalling.J. Biochem.2020168326527110.1093/jb/mvaa04432302384
    [Google Scholar]
  44. GongT. ZhangP. JiaL. PanY. Suppression of ovarian cancer by low-intensity ultrasound through depletion of IL-6/STAT3 inflammatory pathway-maintained cancer stemness.Biochem. Biophys. Res. Commun.2020526382082610.1016/j.bbrc.2020.03.13632273089
    [Google Scholar]
  45. KimG.D. ChoiJ.H. LimS.M. JunJ.H. MoonJ.W. KimG.J. Alterations in IL-6/STAT3 signaling by korean mistletoe lectin regulate the self-renewal activity of placenta-derived mesenchymal stem cells.Nutrients20191111260410.3390/nu1111260431671670
    [Google Scholar]
  46. MaoQ. LiangX.L. WuY.F. PangY.H. ZhaoX.J. LuY.X. ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling.Gene Ther.201926516517610.1038/s41434‑018‑0055‑230814673
    [Google Scholar]
  47. LiuC. DongL. SunZ. WangL. WangQ. LiH. ZhangJ. WangX. Esculentoside A suppresses breast cancer stem cell growth through stemness attenuation and apoptosis induction by blocking IL-6/STAT3 signaling pathway.Phytother. Res.201832112299231110.1002/ptr.617230080291
    [Google Scholar]
  48. ChangM.T. LeeS.P. FangC.Y. HsiehP.L. LiaoY.W. LuM.Y. TsaiL.L. YuC.C. LiuC.M. Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/Stat3 signaling.Environ. Toxicol.201833111105111210.1002/tox.2258730076764
    [Google Scholar]
  49. WangT.Y. YuC.C. HsiehP.L. LiaoY.W. YuC.H. ChouM.Y. GMI ablates cancer stemness and cisplatin resistance in oral carcinomas stem cells through IL-6/Stat3 signaling inhibition.Oncotarget2017841704227043010.18632/oncotarget.1971129050290
    [Google Scholar]
  50. FuQ. LiuP. SunX. HuangS. HanF. ZhangL. XuY. LiuT. Ribonucleic acid interference knockdown of IL-6 enhances the efficacy of cisplatin in laryngeal cancer stem cells by down-regulating the IL-6/STAT3/HIF1 pathway.Cancer Cell Int.20171717910.1186/s12935‑017‑0448‑028878571
    [Google Scholar]
  51. WangX. SunW. ShenW. XiaM. ChenC. XiangD. NingB. CuiX. LiH. LiX. DingJ. WangH. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis.J. Hepatol.20166461283129410.1016/j.jhep.2016.01.01926812074
    [Google Scholar]
  52. TadokoroT. WangY. BarakL.S. BaiY. RandellS.H. HoganB.L.M. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells.Proc. Natl. Acad. Sci. USA201411135E3641E364910.1073/pnas.140978111125136113
    [Google Scholar]
  53. LinC. WangL. WangH. YangL. GuoH. WangX. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways.J. Cell. Biochem.201311492061207010.1002/jcb.2455323553622
    [Google Scholar]
  54. QinB. ZhouZ. HeJ. YanC. DingS. IL-6 inhibits starvation-induced autophagy via the STAT3/Bcl-2 signaling pathway.Sci. Rep.2015511570110.1038/srep1570126549519
    [Google Scholar]
  55. DiG. LiuY. LuY. LiuJ. WuC. DuanH.F. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells.PLoS One2014911e11357210.1371/journal.pone.011357225419563
    [Google Scholar]
  56. KeF. ZhangL. LiuZ. LiuJ. YanS. XuZ. BaiJ. ZhuH. LouF. WangH. ShiY. JiangY. SuB. WangH. Autocrine interleukin-6 drives skin-derived mesenchymal stem cell trafficking via regulating voltage-gated Ca2+ channels.Stem Cells201432102799281010.1002/stem.176324906203
    [Google Scholar]
  57. TuB. DuL. FanQ.M. TangZ. TangT.T. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma.Cancer Lett.20123251808810.1016/j.canlet.2012.06.00622743617
    [Google Scholar]
  58. WangQ. ShuC. SuJ. A crosstalk triggered by hypoxia and maintained by MCP-1/miR-98/IL-6/p-38 regulatory loop between human aortic smooth muscle cells and macrophages leads to aortic smooth muscle cells apoptosis via Stat1 activation.Int J Clin Exp Pathol20158326702679
    [Google Scholar]
  59. WeiY.B. LiuJ.J. VillaescusaJ.C. ÅbergE. BrenéS. WegenerG. MathéA.A. LavebrattC. Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression.Transl. Psychiatry201668e86910.1038/tp.2016.13627529677
    [Google Scholar]
  60. LiH. MengY. XieQ. YiW. LaiX. BianQ. WangJ. WangJ. YuG. miR-98 protects endothelial cells against hypoxia/reoxygenation induced-apoptosis by targeting caspase-3.Biochem. Biophys. Res. Commun.2015467359560110.1016/j.bbrc.2015.09.05826367177
    [Google Scholar]
  61. JiM. LuJ. ShiP. ZhangX. WangS. ChangQ. ChenH. WangC. Dysregulated miR-98 contributes to extracellular matrix degradation by targeting IL-6/STAT3 signaling pathway in human intervertebral disc degeneration.J. Bone Miner. Res.201631490090910.1002/jbmr.275326587789
    [Google Scholar]
  62. LiF. LiX. QiaoL. ShiF. LiuW. LiY. DangY. GuW. WangX. LiuW. miR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6.Exp. Mol. Med.20144610e11610.1038/emm.2014.6325277211
    [Google Scholar]
  63. YuanS. TangC. ChenD. LiF. HuangM. YeJ. HeZ. LiW. ChenY. LinX. WangX. CaiX. miR-98 modulates cytokine production from human pbmcs in systemic lupus erythematosus by targeting IL-6 mRNA.J. Immunol. Res.2019201911110.1155/2019/982757431886314
    [Google Scholar]
  64. XuQ.F. PengH.P. LuX.R. HuY. XuZ.H. XuJ.K. Oleanolic acid regulates the Treg/Th17 imbalance in gastric cancer by targeting IL-6 with miR-98-5p.Cytokine202114815565610.1016/j.cyto.2021.15565634388475
    [Google Scholar]
  65. ShiYS XuJW LiuQQ LiYQ ChengWM Research progress on effect of bone marrow microenvironment regulated by IL-6/IL-6R/JAK2/STAT3 pathway on biological behavior of multiple myeloma-review.Zhongguo Shi Yan Xue Ye Xue Za Zhi202432131832110.19746/j.cnki.issn.1009‑2137.2024.01.05238387942
    [Google Scholar]
  66. MatsudaT. The physiological and pathophysiological role of IL-6/STAT3-mediated signal transduction and STAT3 binding partners in therapeutic applications.Biol. Pharm. Bull.202346336437810.1248/bpb.b22‑0088736858565
    [Google Scholar]
  67. HuangB. LangX. LiX. The role of IL-6/JAK2/STAT3 signaling pathway in cancers.Front. Oncol.202212102317710.3389/fonc.2022.102317736591515
    [Google Scholar]
  68. ManoreS.G. DohenyD.L. WongG.L. LoH.W. IL-6/JAK/STAT3 signaling in breast cancer metastasis: Biology and treatment.Front. Oncol.20221286601410.3389/fonc.2022.86601435371975
    [Google Scholar]
  69. XuJ. LinH. WuG. ZhuM. LiM. IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma.Front. Oncol.20211176097110.3389/fonc.2021.76097134976809
    [Google Scholar]
  70. BoyaP. González-PoloR.A. CasaresN. PerfettiniJ.L. DessenP. LarochetteN. MétivierD. MeleyD. SouquereS. YoshimoriT. PierronG. CodognoP. KroemerG. Inhibition of macroautophagy triggers apoptosis.Mol. Cell. Biol.20052531025104010.1128/MCB.25.3.1025‑1040.200515657430
    [Google Scholar]
  71. ShenH.M. CodognoP. Autophagic cell death: Loch Ness monster or endangered species?Autophagy20117545746510.4161/auto.7.5.1422621150268
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X294637240517050849
Loading
/content/journals/cscr/10.2174/011574888X294637240517050849
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; autophagy; Cardiac stem cells; hypoxia; interleukin-6; miR-98, STAT3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test