Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-6215
  • E-ISSN: 2772-6223

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder primarily affecting the elderly, characterized by cognitive decline and memory impairment. The accumulation of amyloid-β (Aβ) peptides, particularly Aβ42, into neurotoxic plaques is a key pathological hallmark, leading to neuronal damage and cognitive dysfunction. Given the limited efficacy of existing treatments, targeting Aβ aggregation presents a promising therapeutic approach. This review explores the potential of carbon quantum dots (CQDs) synthesized pulsed laser ablation (PLA) and functionalized with targeting agents for disrupting Aβ aggregation and mitigating AD pathology. Selenium-doped CQDs (SeCQDs) and aptamer-functionalized CQDs (Apta@CQDs) demonstrate specific interactions with Aβ42, reducing cytotoxicity and enhancing biocompatibility. CQDs exert neuroprotective effects by minimizing oxidative stress and modulating Aβ aggregation through red-light-responsive phototherapy. studies confirm their ability to inhibit β-sheet formation and prevent Aβ-induced toxicity, while models, including Caenorhabditis elegans and 5xFAD mice, show reduced Aβ deposition, improved cognitive function, and enhanced neuronal survival. CQDs offer a multimodal therapeutic strategy for AD by disrupting Aβ aggregation, reducing oxidative stress, and enhancing neuroprotection. Their unique physicochemical properties highlight their potential as innovative, non-invasive nanodrugs for AD treatment, warranting further exploration in clinical applications.

Loading

Article metrics loading...

/content/journals/csci/10.2174/0127726215377976250525185227
2025-05-29
2025-10-08
Loading full text...

Full text loading...

References

  1. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. MaheshwariS. ShariqM. ParveenS. ShamimA. Emerging nanotechnology for the treatment of Alzheimer’s disease.CNS Neurol. Disord. Drug Targets202423668769610.2174/187152732266623050123281537138478
    [Google Scholar]
  2. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. ShariqM. ParveenS. MaheshwariS. Receptor for advanced glycation end products: dementia and cognitive impairment.Drug Res. (Stuttg.)202373524725010.1055/a‑2015‑804136889338
    [Google Scholar]
  3. SinghA. AnsariV.A. AnsariT.M. HasanS.M. AhsanF. SinghK. WasimR. MaheshwariS. AhmadA. Consequence of dementia and cognitive impairment by primary nucleation pathway.Horm. Metab. Res.202355530431410.1055/a‑2052‑846237130536
    [Google Scholar]
  4. SinghA. AnsariV.A. MahmoodT. AhsanF. MaheshwariS. Repercussion of primary nucleation pathway: Dementia and cognitive impairment.Curr. Aging Sci.202417319620410.2174/011874609824332723111711374838083895
    [Google Scholar]
  5. SinghA. AnsariV.A. MahmoodT. HasanS.M. WasimR. MaheshwariS. AkhtarJ. SheikhS. VishwakarmaV.K. Targeting abnormal tau phosphorylation for Alzheimer’s therapeutics.Horm. Metab. Res.202456748248810.1055/a‑2238‑138438350636
    [Google Scholar]
  6. MageshV. SundramoorthyA.K. GanapathyD. Recent advances on synthesis and potential applications of carbon quantum dots.Front. Mater.2022990683810.3389/fmats.2022.906838
    [Google Scholar]
  7. AzamN. Najabat AliM. Javaid KhanT. Carbon quantum dots for biomedical applications: review and analysis.Front. Mater.2021870040310.3389/fmats.2021.700403
    [Google Scholar]
  8. OlivaresD. DeshpandeV.K. ShiY. LahiriD.K. GreigN.H. RogersJ.T. HuangX. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease.Curr. Alzheimer Res.20129674675810.2174/15672051280132256421875407
    [Google Scholar]
  9. CummingsJ. OsseA.M.L. CammannD. PowellJ. ChenJ. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease.BioDrugs202438152210.1007/s40259‑023‑00633‑237955845
    [Google Scholar]
  10. LiH. LiuC.C. ZhengH. HuangT.Y. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease –conformist, nonconformist, and realistic prospects for AD pathogenesis.Transl. Neurodegener.2018713410.1186/s40035‑018‑0139‑3
    [Google Scholar]
  11. ChangY.J. ChenY.R. The coexistence of an equal amount of Alzheimer’s amyloid‐β 40 and 42 forms structurally stable and toxic oligomers through a distinct pathway.FEBS J.2014281112674268710.1111/febs.1281324720730
    [Google Scholar]
  12. SheaD. HsuC.C. BiT.M. ParanjapyeN. ChildersM.C. CochranJ. TomberlinC.P. WangL. ParisD. ZondermanJ. VaraniG. LinkC.D. MullanM. DaggettV. α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer’s disease.Proc. Natl. Acad. Sci. USA2019116188895890010.1073/pnas.182058511631004062
    [Google Scholar]
  13. GhoshS. AliR. VermaS. Aβ-oligomers: A potential therapeutic target for Alzheimer’s disease.Int. J. Biol. Macromol.202323912423110.1016/j.ijbiomac.2023.12423136996958
    [Google Scholar]
  14. LiaoM.Q. TzengY.J. ChangL.Y.X. HuangH.B. LinT.H. ChyanC.L. ChenY.C. The correlation between neurotoxicity, aggregative ability and secondary structure studied by sequence truncated Aβ peptides.FEBS Lett.200758161161116510.1016/j.febslet.2007.02.02617328898
    [Google Scholar]
  15. XiaC. ZhuS. FengT. YangM. YangB. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots.Adv. Sci. (Weinh.)2019623190131610.1002/advs.20190131631832313
    [Google Scholar]
  16. ZengQ. FengT. TaoS. ZhuS. YangB. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): The nomenclature.Light Sci. Appl.202110114210.1038/s41377‑021‑00579‑634253707
    [Google Scholar]
  17. HuangJ. ChenY. RaoP. NiZ. ChenX. ZhuJ. LiC. XiongG. LiangP. HeX. QuS. LinJ. Enhancing the electron transport, quantum yield, and catalytic performance of carbonized polymer dots via Mn—O bridges.Small20221813210686310.1002/smll.202106863
    [Google Scholar]
  18. KangC. TaoS. YangF. YangB. Aggregation and luminescence in carbonized polymer dots.Aggregate202232e16910.1002/agt2.169
    [Google Scholar]
  19. ZhouY. LiyanageP.Y. DevadossD. Rios GuevaraL.R. ChengL. GrahamR.M. ChandH.S. Al-YoubiA.O. BashammakhA.S. El-ShahawiM.S. LeblancR.M. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid.Nanoscale20191146223872239710.1039/C9NR08194A31730144
    [Google Scholar]
  20. SevenE.S. SevenY.B. ZhouY. Poudel-SharmaS. Diaz-RuccoJ.J. Kirbas CilingirE. MitchellG.S. Van DykenJ.D. LeblancR.M. Crossing the blood–brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery.Nanoscale Adv.20213133942395310.1039/D1NA00145K34263140
    [Google Scholar]
  21. HanX. JingZ. WuW. ZouB. PengZ. RenP. WikramanayakeA. LuZ. LeblancR.M. Biocompatible and blood–brain barrier permeable carbon dots for inhibition of Aβ fibrillation and toxicity, and BACE1 activity.Nanoscale2017935128621286610.1039/C7NR04352J28850143
    [Google Scholar]
  22. ChungY.J. LeeB.I. ParkC.B. Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu (ii)-mediated β-amyloid aggregation.Nanoscale201911136297630610.1039/C9NR00473D30882825
    [Google Scholar]
  23. ChungY.J. LeeC.H. LimJ. JangJ. KangH. ParkC.B. Photomodulating carbon dots for spatiotemporal suppression of Alzheimer’s β-amyloid aggregation.ACS Nano20201412169731698310.1021/acsnano.0c0607833236883
    [Google Scholar]
  24. LiuY. XuL.P. WangQ. YangB. ZhangX. Synergistic inhibitory effect of GQDs–tramiprosate covalent binding on amyloid aggregation.ACS Chem. Neurosci.20189481782310.1021/acschemneuro.7b0043929244487
    [Google Scholar]
  25. LiuY. XuL.P. DaiW. DongH. WenY. ZhangX. Graphene quantum dots for the inhibition of β amyloid aggregation.Nanoscale2015745190601906510.1039/C5NR06282A26515666
    [Google Scholar]
  26. LiH. ZhangY. DingJ. WuT. CaiS. ZhangW. CaiR. ChenC. YangR. Synthesis of carbon quantum dots for application of alleviating amyloid-β mediated neurotoxicity.Colloids Surf. B Biointerfaces202221211237310.1016/j.colsurfb.2022.11237335101826
    [Google Scholar]
  27. HasanM.R. SahaN. QuaidT. RezaM.T. Formation of carbon quantum dots via hydrothermal carbonization: Investigate the effect of precursors.Energies202114498610.3390/en14040986
    [Google Scholar]
  28. ZhouX. HuS. WangS. PangY. LinY. LiM. Large amino acid mimicking selenium-doped carbon quantum dots for multi-target therapy of Alzheimer’s disease.Front. Pharmacol.20211277861310.3389/fphar.2021.77861334776988
    [Google Scholar]
  29. Pranav; Bajpai, A.; Dwivedi, P.K.; Sivakumar, S. Chiral nanomaterial-based approaches for diagnosis and treatment of protein-aggregated neurodiseases: Current status and future opportunities.J. Mater. Chem. B Mater. Biol. Med.20241281991200510.1039/D3TB02381H38333942
    [Google Scholar]
  30. ChenS. LiR. LiuY. ZhangZ. FangM. HuangS. LiY. GengL. Multifunctional nitrogen-doped carbon dots to inhibit the aggregation of Aβ peptide and depolymerize the Aβ fibrils by modulating reactive oxygen species.Langmuir20244049260182602510.1021/acs.langmuir.4c0345439602498
    [Google Scholar]
  31. WangX. ZhaoL. HuJ. WeiH. LiuX. LiE. YangS. Rational design of novel carbon-oxygen quantum dots for ratiometrically mapping pH and reactive oxygen species scavenging.Carbon202219011512410.1016/j.carbon.2022.01.006
    [Google Scholar]
  32. HoanB.T. TamP.D. PhamV.H. Green synthesis of highly luminescent carbon quantum dots from lemon juice.J. Nanotechnol.201920191910.1155/2019/2852816
    [Google Scholar]
  33. GuoX. ZhangH. SunH. TadeM.O. WangS. Green synthesis of carbon quantum dots for sensitized solar cells.ChemPhotoChem20171411611910.1002/cptc.201600038
    [Google Scholar]
  34. BawejaH JeetK Economical and green synthesis of graphene and carbon quantum dots from agricultural waste.Mater. Res. Express,201960850g810.1088/2053‑1591/ab28e5
    [Google Scholar]
  35. Sariga; Ayilliath Kolaprath, M.K.; Benny, L.; Varghese, A. A facile, green synthesis of carbon quantum dots from Polyalthia longifolia and its application for the selective detection of cadmium.Dyes Pigments202321011104810.1016/j.dyepig.2022.111048
    [Google Scholar]
  36. YenY.C. LinC.C. ChenP.Y. KoW.Y. TienT.R. LinK.J. Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent.R. Soc. Open Sci.20174516105110.1098/rsos.16105128572996
    [Google Scholar]
  37. BehiM. GholamiL. NaficyS. PalombaS. DehghaniF. Carbon dots: A novel platform for biomedical applications.Nanoscale Adv.20224235337610.1039/D1NA00559F36132691
    [Google Scholar]
  38. LiuZ. LinC.H. HyunB.R. SherC.W. LvZ. LuoB. JiangF. WuT. HoC.H. KuoH.C. HeJ.H. Micro-light-emitting diodes with quantum dots in display technology.Light Sci. Appl.2020918310.1038/s41377‑020‑0268‑132411368
    [Google Scholar]
  39. KhayalA. DawaneV. AminM.A. TirthV. YadavV.K. AlgahtaniA. KhanS.H. IslamS. YadavK.K. JeonB.H. Advances in the methods for the synthesis of carbon dots and their emerging applications.Polymers (Basel)20211318319010.3390/polym1318319034578091
    [Google Scholar]
  40. EzatiP. PriyadarshiR. RhimJ.W. Prospects of sustainable and renewable source-based carbon quantum dots for food packaging applications.Sustainable Materials and Technologies202233e0049410.1016/j.susmat.2022.e00494
    [Google Scholar]
  41. SurendranP. LakshmananA. PriyaS.S. GeethaP. RameshkumarP. KannanK. HegdeT.A. VinithaG. Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities.Inorg. Chem. Commun.202112410839710.1016/j.inoche.2020.108397
    [Google Scholar]
  42. GhorbaniM. TajikH. MoradiM. MolaeiR. AlizadehA. One-pot microbial approach to synthesize carbon dots from baker’s yeast-derived compounds for the preparation of antimicrobial membrane.J. Environ. Chem. Eng.202210310752510.1016/j.jece.2022.107525
    [Google Scholar]
  43. ChahalS. MacairanJ.R. YousefiN. TufenkjiN. NaccacheR. Green synthesis of carbon dots and their applications.RSC Advances20211141253542536310.1039/D1RA04718C35478913
    [Google Scholar]
  44. de OliveiraB.P. da Silva AbreuF.O.M. Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges.Mater. Lett.202128212876410.1016/j.matlet.2020.128764
    [Google Scholar]
  45. ElangoD. PackialakshmiJ.S. ManikandanV. JayanthiP. Sustainable synthesis of carbon quantum dots from shrimp shell and its emerging applications.Mater. Lett.202231213166713173110.1016/j.matlet.2022.131667
    [Google Scholar]
  46. SongK. YuanJ. ShenT. DuJ. GuoR. PulleritsT. TianJ. Spray coated colloidal quantum dot films for broadband photodetectors.Nanomaterials (Basel)2019912173810.3390/nano912173831817681
    [Google Scholar]
  47. WuL. GaoY. ZhaoC. HuangD. ChenW. LinX. LiuA. LinL. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing.Biomaterials Advances202213311260810.1016/j.msec.2021.11260835525745
    [Google Scholar]
  48. GuoY. ZhangL. CaoF. LengY. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+.Sci. Rep.2016613579510.1038/srep3579527762342
    [Google Scholar]
  49. TyagiA. TripathiK.M. SinghN. ChoudharyS. GuptaR.K. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis.RSC Advances2016676724237243210.1039/C6RA10488F
    [Google Scholar]
  50. Abd AzizA. RamzilahU.R. Removal of methyl orange (MO) using carbon quantum dots (CQDs) derived from watermelon rinds.International Journal of Engineering Technology and Sciences201961919910.15282/ijets.v6i1.2226
    [Google Scholar]
  51. AtchudanR. PerumalS. Jebakumar Immanuel EdisonT.N. AldawoodS. VinodhR. SundramoorthyA.K. GhodakeG. LeeY.R. Facile synthesis of novel molybdenum disulfide decorated banana peel porous carbon electrode for hydrogen evolution reaction.Chemosphere2022307Pt 113571210.1016/j.chemosphere.2022.13571235843438
    [Google Scholar]
  52. AjiM.P. Susanto; Wiguna, P.A.; Sulhadi. Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method.Journal of Theoretical and Applied. Physics.201711211912610.1007/s40094‑017‑0250‑3
    [Google Scholar]
  53. HongW.T. YangH.K. Anti-counterfeiting application of fluorescent carbon dots derived from wasted coffee grounds.Optik (Stuttg.)202124116644910.1016/j.ijleo.2021.166449
    [Google Scholar]
  54. VandarkuzhaliS.A.A. JeyalakshmiV. SivaramanG. SingaravadivelS. KrishnamurthyK.R. ViswanathanB. Highly fluorescent carbon dots from pseudo-stem of banana plant: Applications as nanosensor and bio-imaging agents.Sens. Actuators B Chem.201725289490010.1016/j.snb.2017.06.088
    [Google Scholar]
  55. BaluR. DuttaN.K. Roy ChoudhuryN. Plastic waste upcycling: A sustainable solution for waste management, product development, and circular economy.Polymers (Basel)20221422478810.3390/polym1422478836432915
    [Google Scholar]
  56. AhnJ. SongY. KwonJ.E. LeeS.H. ParkK.S. KimS. WooJ. KimH. Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging.Mater. Sci. Eng. C201910210611210.1016/j.msec.2019.04.01931146980
    [Google Scholar]
  57. SinghR.K. PatilT. PandeyD. TekadeS.P. SawarkarA.N. Co-pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis.J. Environ. Manage.202230111385410.1016/j.jenvman.2021.11385434607141
    [Google Scholar]
  58. ArulV. SethuramanM.G. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications.Opt. Mater.20187818119010.1016/j.optmat.2018.02.029
    [Google Scholar]
  59. MalavikaJ.P. ShobanaC. RagupathiM. KumarP. LeeY.S. GovarthananM. SelvanR.K. A sustainable green synthesis of functionalized biocompatible carbon quantum dots from Aloe barbadensis Miller and its multifunctional applications.Environ. Res.202120011141410.1016/j.envres.2021.11141434052245
    [Google Scholar]
  60. HuS. WeiZ. ChangQ. TrinchiA. YangJ. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity.Appl. Surf. Sci.201637840240710.1016/j.apsusc.2016.04.038
    [Google Scholar]
  61. YadavP.K. SinghV.K. ChandraS. BanoD. KumarV. TalatM. HasanS.H. Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits.ACS Biomater. Sci. Eng.20195262363210.1021/acsbiomaterials.8b0152833405826
    [Google Scholar]
  62. WangT. LiuX. MaC. ZhuZ. LiuY. LiuZ. WeiM. ZhaoX. DongH. HuoP. LiC. YanY. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity.J. Alloys Compd.201875210611410.1016/j.jallcom.2018.04.085
    [Google Scholar]
  63. WesołyM. CetóX. del ValleM. CiosekP. WróblewskiW. Quantitative analysis of active pharmaceutical ingredients (APIs) using a potentiometric electronic tongue in a SIA flow system.Electroanalysis201628362663210.1002/elan.201500407
    [Google Scholar]
  64. JiangQ. jing, Y.; Ni, Y.; Gao, R.; Zhou, P. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO−.Microchem. J.202015710511110.1016/j.microc.2020.105111
    [Google Scholar]
  65. LiuX. PangJ. XuF. ZhangX. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan.Sci. Rep.2016613110010.1038/srep3110027492748
    [Google Scholar]
  66. HuangH. CuiY. LiuM. ChenJ. WanQ. WenY. DengF. ZhouN. ZhangX. WeiY. A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging.J. Colloid Interface Sci.201853276777310.1016/j.jcis.2018.07.09930130727
    [Google Scholar]
  67. WangJ. WeiJ. SuS. QiuJ. Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots.New J. Chem.201539150150710.1039/C4NJ00538D
    [Google Scholar]
  68. ChatzimitakosT. KasouniA. SygellouL. AvgeropoulosA. TroganisA. StalikasC. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging.Talanta201717530531210.1016/j.talanta.2017.07.05328841995
    [Google Scholar]
  69. AdinarayanaL. ChunduriA. KurdekarA. PatnaikS. AdithaS. PrathibhaC. KamisettiV. Single step synthesis of carbon quantum dots from coconut shell: Evaluation for antioxidant efficacy and hemotoxicity.J. Mater. Sci. Appl.2017368393
    [Google Scholar]
  70. CostaAlexandra I. Carbon dots from coffee grounds: Synthesis, characterization, and detection of noxious nitroanilines.Chemosensors 202210311310.3390/chemosensors10030113
    [Google Scholar]
  71. EskalenH. UruşS. CömertpayS. KurtA.H. ÖzganŞ. Microwave-assisted ultra-fast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties.Ind. Crops Prod.202014711220910.1016/j.indcrop.2020.112209
    [Google Scholar]
  72. DehvariK. LiuK.Y. TsengP.J. GeddaG. GirmaW.M. ChangJ.Y. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging.J. Taiwan Inst. Chem. Eng.20199549550310.1016/j.jtice.2018.08.037
    [Google Scholar]
  73. KavithaT. KumarS. Turning date palm fronds into biocompatible mesoporous fluorescent carbon dots.Sci. Rep.2018811626910.1038/s41598‑018‑34349‑z30389974
    [Google Scholar]
  74. ThangarajB. ChuangchoteS. WongyaoN. SolomonP.R. RoongraungK. ChaiwornW. SurareungchaiW. Flexible sodium-ion batteries using electrodes from Samanea saman tree leaf - derived carbon quantum dots decorated with SnO2 and NaVO3.Clean Energy.20215235437410.1093/ce/zkab016
    [Google Scholar]
  75. ChengC. ShiY. LiM. XingM. WuQ. Carbon quantum dots from carbonized walnut shells: Structural evolution, fluorescence characteristics, and intracellular bioimaging.Mater. Sci. Eng. C20177947348010.1016/j.msec.2017.05.09428629043
    [Google Scholar]
  76. RenX. ZhangF. GuoB. GaoN. ZhangX. Synthesis of N-doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging.Nanomaterials (Basel)20199449510.3390/nano904049530939724
    [Google Scholar]
  77. ZhuJ. ZhuF. YueX. ChenP. SunY. ZhangL. MuD. KeF. Waste utilization of synthetic carbon quantum dots based on tea and peanut shell.J. Nanomater.201920191710.1155/2019/7965756
    [Google Scholar]
  78. HakC.H. LeongK.H. ChinY.H. SaravananP. TanS.T. ChongW.C. SimL.C. Water hyacinth derived carbon quantum dots and g-C3N4 composites for sunlight driven photodegradation of 2,4-dichlorophenol.SN Applied Sciences202026103010.1007/s42452‑020‑2840‑y
    [Google Scholar]
  79. ShiL. ZhaoB. LiX. ZhangG. ZhangY. DongC. ShuangS. Eco-friendly synthesis of nitrogen-doped carbon nanodots from wool for multicolor cell imaging, patterning, and biosensing.Sens. Actuators B Chem.201623531632410.1016/j.snb.2016.05.094
    [Google Scholar]
  80. AlamdariN.G. AlmasiH. MoradiM. AkhgariM. Characterization of carbon quantum dots synthesized from vinasse and date seeds as agro-industrial wastes.Waste Biomass Valoriz.202314113689370310.1007/s12649‑023‑02087‑7
    [Google Scholar]
  81. LaneA. GokhaleA. WernerE. RobertsA. FreemanA. RobertsB. FaundezV. Sulfur- and phosphorus-standardized metal quantification of biological specimens using inductively coupled plasma mass spectrometry.STAR Protoc20223210133410.1016/j.xpro.2022.10133435496782
    [Google Scholar]
  82. KarmakarS.A. Particle size distribution and zeta potential based on dynamic light scattering: Techniques to characterise stability and surface distribution of charged colloids.In: Recent Trends in Mater. Phys. Chem.; Studium Press(India)Pvt Ltd,201919117159
    [Google Scholar]
  83. ShaikhA.F. TamboliM.S. PatilR.H. BhanA. AmbekarJ.D. KaleB.B. Bioinspired carbon quantum dots: an antibiofilm agents.J. Nanosci. Nanotechnol.20191942339234510.1166/jnn.2019.1653730486995
    [Google Scholar]
  84. FadleyC.S. X-ray photoelectron spectroscopy: Progress and perspectives.J. Electron Spectrosc. Relat. Phenom.2010178-17923210.1016/j.elspec.2010.01.006
    [Google Scholar]
  85. UthirakumarP. DevendiranM. KimT.H. LeeI.H. A convenient method for isolating carbon quantum dots in high yield as an alternative to the dialysis process and the fabrication of a full-band UV blocking polymer film.New J. Chem.20184222183121831710.1039/C8NJ04615H
    [Google Scholar]
  86. YeP. LiL. QiX. ChiM. LiuJ. XieM. Macrophage membrane- encapsulated nitrogen-doped carbon quantum dot nanosystem for targeted treatment of Alzheimer’s disease: Regulating metal ion homeostasis and photothermal removal of β-amyloid.J. Colloid Interface Sci.,2023650(Pt B)1749176110.1016/j.jcis.2023.07.13237506416
    [Google Scholar]
  87. ChiM. LiuJ. LiL. ZhangY. XieM. CeO2 in situ growth on red blood cell membranes: CQD coating and multipathway Alzheimer’s disease therapy under NIR.ACS Appl. Mater. Interfaces20241628358983591110.1021/acsami.4c0208838954799
    [Google Scholar]
  88. GuerreroE.D. Lopez-VelazquezA.M. AhlawatJ. NarayanM. Carbon quantum dots for treatment of amyloid disorders.ACS Appl. Nano Mater.2021432423243310.1021/acsanm.0c0279233969279
    [Google Scholar]
  89. LiuJ. ChiM. LiL. ZhangY. XieM. Erythrocyte membrane coated with nitrogen-doped quantum dots and polydopamine composite nano-system combined with photothermal treatment of Alzheimer’s disease.J. Colloid Interface Sci.202466385686810.1016/j.jcis.2024.02.21938447400
    [Google Scholar]
  90. GhoshS. SachdevaB. SachdevaP. ChaudharyV. RaniG.M. SinhaJ.K. Graphene quantum dots as a potential diagnostic and therapeutic tool for the management of Alzheimer’s disease.Carbon Letters20223261381139410.1007/s42823‑022‑00397‑9
    [Google Scholar]
  91. MosalamE.M. ElberriA.I. AbdallahM.S. Abdel-BarH.M. ZidanA.A.A. BatakoushyH.A. Abo MansourH.E. Mechanistic insights of neuroprotective efficacy of verapamil-loaded carbon quantum dots against LPS-induced neurotoxicity in rats.Int. J. Mol. Sci.20242514779010.3390/ijms2514779039063042
    [Google Scholar]
  92. HuY. WangX. NiuY. HeK. TangM. Application of quantum dots in brain diseases and their neurotoxic mechanism.Nanoscale Adv.20246153733374610.1039/D4NA00028E39050959
    [Google Scholar]
  93. GuoF. LiQ. ZhangX. LiuY. JiangJ. ChengS. YuS. ZhangX. LiuF. LiY. RoseG. ZhangH. Applications of carbon dots for the treatment of Alzheimer’s disease.Int. J. Nanomedicine2022176621663810.2147/IJN.S38803036582459
    [Google Scholar]
  94. MohanV. Recent advances of carbon dots for treatment of Alzheimer’s and Parkinson’s diseases.Int. J. Adv. Nano Comput. Anal.202321395910.61797/ijanca.v2i1.240
    [Google Scholar]
  95. ShareenaG. ViswalingamV. KumarD. Carbon dots as versatile nano-architectures for the treatment of neurological disorders.Targeted Therapy for the Central Nervous System.Cambridge, MassachusettsAcademic Press202534936810.1016/B978‑0‑443‑23841‑3.00016‑9
    [Google Scholar]
  96. AhlawatJ. NarayanM. Multifunctional carbon quantum dots prevent soluble-to-toxic transformation of amyloid and oxidative stress.ACS Sustainable. Chem.& Eng.202210144610462210.1021/acssuschemeng.1c08638
    [Google Scholar]
  97. ElugokeS.E. UwayaG.E. QuadriT.W. EbensoE.E. Carbon Quantum Dots: Basics, Properties, and Fundamentals InCarbon Dots: Recent Developments and Future Perspectives.American Chemical Society202434210.1021/bk‑2024‑1465.ch001
    [Google Scholar]
  98. LimJ.L. LinC.J. HuangC.C. ChangL.C. Curcumin-derived carbon quantum dots: Dual actions in mitigating tau hyperphosphorylation and amyloid beta aggregation.Colloids Surf. B Biointerfaces202423411367610.1016/j.colsurfb.2023.11367638056413
    [Google Scholar]
/content/journals/csci/10.2174/0127726215377976250525185227
Loading
/content/journals/csci/10.2174/0127726215377976250525185227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test