Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-6215
  • E-ISSN: 2772-6223

Abstract

The favourable results of Chimeric Antigen Receptor (CAR) T-cell therapy in the management of hematologic malignancies have heightened the formerly unparalleled enthusiasm for employing this novel strategy in the treatment of diverse types of human malignancies. Although there has been a lot of study on increasing the effectiveness of these cells in solid tumors, few studies have examined challenges and potential fixes. A number of the main challenges that CAR-T-cells face include confined trafficking and penetration into the tumour zone, hypoxic and immunosuppressive tumour microenvironment (TME), antigen escape and heterogeneity, CAR-T-cell fatigue, and intense incurable toxicities. Beyond these constraints, CAR designs must expand their applicability to a wider variety of malignancies by surpassing the standard architectures. In order to overcome current obstacles and improve the efficacy and materiality of this therapeutic manner, investigators are combining many medicinal approaches with a broad range of engineering solutions.

Loading

Article metrics loading...

/content/journals/csci/10.2174/0127726215340105250124053210
2025-02-07
2025-09-02
Loading full text...

Full text loading...

References

  1. WangL. ZhangL. DunmallL.C. WangY.Y. FanZ. ChengZ. WangY. The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors.Cancer Lett.202459121687110.1016/j.canlet.2024.21687138604310
    [Google Scholar]
  2. LiuY. FangY. ChenX. WangZ. LiangX. ZhangT. LiuM. ZhouN. LvJ. TangK. XieJ. GaoY. ChengF. ZhouY. ZhangZ. HuY. ZhangX. GaoQ. ZhangY. HuangB. Gasdermin E–mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome.Sci. Immunol.2020543eaax796910.1126/sciimmunol.aax796931953257
    [Google Scholar]
  3. AwasthiR. MaierH.J. ZhangJ. LimS. Kymriah® (tisagenlecleucel) – An overview of the clinical development journey of the first approved CAR-T therapy.Hum. Vaccin. Immunother.2023191221004610.1080/21645515.2023.221004637185251
    [Google Scholar]
  4. HouB. TangY. LiW. ZengQ. ChangD. Efficiency of CAR‐T therapy for treatment of solid tumor in clinical trials: A meta‐analysis.Dis. Markers20192019111110.1155/2019/342529130886654
    [Google Scholar]
  5. Daei SorkhabiA. Mohamed KhosroshahiL. SarkeshA. MardiA. Aghebati-MalekiA. Aghebati-MalekiL. BaradaranB. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies.Front. Immunol.202314111388210.3389/fimmu.2023.111388237020537
    [Google Scholar]
  6. WeiR. LiuS. ZhangS. MinL. ZhuS. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers.Anal. Cell. Pathol. (Amst.)20202020111310.1155/2020/628379632377504
    [Google Scholar]
  7. PaukenK.E. WherryE.J. Overcoming T cell exhaustion in infection and cancer.Trends Immunol.201536426527610.1016/j.it.2015.02.00825797516
    [Google Scholar]
  8. VermaN.K. WongB.H.S. PohZ.S. UdayakumarA. VermaR. GohR.K.J. DugganS.P. ShelatV.G. ChandyK.G. GrigoropoulosN.F. Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint.EBioMedicine20228310421610.1016/j.ebiom.2022.10421635986950
    [Google Scholar]
  9. WatsonM.J. VignaliP.D.A. MullettS.J. Overacre-DelgoffeA.E. PeraltaR.M. GrebinoskiS. MenkA.V. RittenhouseN.L. DePeauxK. WhetstoneR.D. VignaliD.A.A. HandT.W. PoholekA.C. MorrisonB.M. RothsteinJ.D. WendellS.G. DelgoffeG.M. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid.Nature2021591785164565110.1038/s41586‑020‑03045‑233589820
    [Google Scholar]
  10. ColegioO.R. ChuN.Q. SzaboA.L. ChuT. RhebergenA.M. JairamV. CyrusN. BrokowskiC.E. EisenbarthS.C. PhillipsG.M. ClineG.W. PhillipsA.J. MedzhitovR. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.Nature2014513751955956310.1038/nature1349025043024
    [Google Scholar]
  11. LiaoL. SongM. LiX. TangL. ZhangT. ZhangL. PanY. ChouchaneL. MaX. E3 ubiquitin ligase UBR5 drives the growth and metastasis of triple-negative breast cancer.Cancer Res.20177782090210110.1158/0008‑5472.CAN‑16‑240928330927
    [Google Scholar]
  12. WangY.T. ChenJ. ChangC.W. JenJ. HuangT.Y. ChenC.M. ShenR. LiangS.Y. ChengI.C. YangS.C. LaiW.W. ChengK.H. HsiehT.S. LaiM.Z. ChengH.C. WangY.C. ChenR.H. Ubiquitination of tumor suppressor PML regulates prometastatic and immunosuppressive tumor microenvironment.J. Clin. Invest.201712782982299710.1172/JCI8995728691927
    [Google Scholar]
  13. Lipowska-BhallaG. GilhamD.E. HawkinsR.E. RothwellD.G. Targeted immunotherapy of cancer with CAR T cells: Achievements and challenges.Cancer Immunol. Immunother.201261795396210.1007/s00262‑012‑1254‑022527245
    [Google Scholar]
  14. RamosC.A. DottiG. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy.Expert Opin. Biol. Ther.201111785587310.1517/14712598.2011.57347621463133
    [Google Scholar]
  15. LiuJ. ZhongJ.F. ZhangX. ZhangC. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies.J. Hematol. Oncol.20171013510.1186/s13045‑017‑0405‑328143567
    [Google Scholar]
  16. TasianS.K. GardnerR.A. CD19-redirected chimeric antigen receptor-modified T cells: A promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL).Ther. Adv. Hematol.20156522824110.1177/204062071558891626425336
    [Google Scholar]
  17. DwivediA. KarulkarA. GhoshS. RafiqA. PurwarR. Lymphocytes in cellular therapy: Functional regulation of CAR T cells.Front. Immunol.20199318010.3389/fimmu.2018.0318030713539
    [Google Scholar]
  18. SmithE.L. HarringtonK. StaehrM. MasakayanR. JonesJ. LongT.J. NgK.Y. GhoddusiM. PurdonT.J. WangX. DoT. PhamM.T. BrownJ.M. De LarreaC.F. OlsonE. PegueroE. WangP. LiuH. XuY. Garrett-ThomsonS.C. AlmoS.C. WendelH.G. RiviereI. LiuC. SatherB. BrentjensR.J. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells.Sci. Transl. Med.201911485eaau774610.1126/scitranslmed.aau774630918115
    [Google Scholar]
  19. SmithE.L. StaehrM. MasakayanR. TatakeI.J. PurdonT.J. WangX. WangP. LiuH. XuY. Garrett-ThomsonS.C. AlmoS.C. RiviereI. LiuC. BrentjensR.J. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector.Mol. Ther.20182661447145610.1016/j.ymthe.2018.03.01629678657
    [Google Scholar]
  20. BaileyS.R. MausM.V. Gene editing for immune cell therapies.Nat. Biotechnol.201937121425143410.1038/s41587‑019‑0137‑831160723
    [Google Scholar]
  21. HudecekM. Lupo-StanghelliniM.T. KosasihP.L. SommermeyerD. JensenM.C. RaderC. RiddellS.R. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells.Clin. Cancer Res.201319123153316410.1158/1078‑0432.CCR‑13‑033023620405
    [Google Scholar]
  22. LynnR.C. FengY. SchutskyK. PoussinM. KalotaA. DimitrovD.S. PowellD.J. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.Leukemia20163061355136410.1038/leu.2016.3526898190
    [Google Scholar]
  23. LiuX. JiangS. FangC. YangS. OlalereD. PequignotE.C. CogdillA.P. LiN. RamonesM. GrandaB. ZhouL. LoewA. YoungR.M. JuneC.H. ZhaoY. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice.Cancer Res.201575173596360710.1158/0008‑5472.CAN‑15‑015926330166
    [Google Scholar]
  24. BridgemanJ.S. HawkinsR.E. BagleyS. BlaylockM. HollandM. GilhamD.E. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex.J. Immunol.2010184126938694910.4049/jimmunol.090176620483753
    [Google Scholar]
  25. GuedanS. PoseyA.D. ShawC. WingA. DaT. PatelP.R. McGettiganS.E. Casado-MedranoV. KawalekarO.U. Uribe-HerranzM. SongD. MelenhorstJ.J. LaceyS.F. SchollerJ. KeithB. YoungR.M. JuneC.H. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation.JCI Insight201831e9697610.1172/jci.insight.9697629321369
    [Google Scholar]
  26. AlabanzaL. PeguesM. GeldresC. ShiV. WiltziusJ.J.W. SieversS.A. YangS. KochenderferJ.N. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains.Mol. Ther.201725112452246510.1016/j.ymthe.2017.07.01328807568
    [Google Scholar]
  27. JensenM.C. RiddellS.R. Designing chimeric antigen receptors to effectively and safely target tumors.Curr. Opin. Immunol.20153391510.1016/j.coi.2015.01.00225621840
    [Google Scholar]
  28. GuedanS. CalderonH. PoseyA.D. MausM.V. Engineering and design of chimeric antigen receptors.Mol. Ther. Methods Clin. Dev.20191214515610.1016/j.omtm.2018.12.00930666307
    [Google Scholar]
  29. QinL. ZhaoR. LiP. Incorporation of functional elements enhances the antitumor capacity of CAR T cells.Exp. Hematol. Oncol.2017612810.1186/s40164‑017‑0088‑z29046826
    [Google Scholar]
  30. WatanabeN. BajgainP. SukumaranS. AnsariS. HeslopH.E. RooneyC.M. BrennerM.K. LeenA.M. VeraJ.F. Fine-tuning the CAR spacer improves T-cell potency.OncoImmunology2016512e125365610.1080/2162402X.2016.125365628180032
    [Google Scholar]
  31. GuestR.D. HawkinsR.E. KirillovaN. CheadleE.J. ArnoldJ. O’NeillA. IrlamJ. ChesterK.A. KemsheadJ.T. ShawD.M. EmbletonM.J. SternP.L. GilhamD.E. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: Evaluation of four different scFvs and antigens.J. Immunother.200528320321110.1097/01.cji.0000161397.96582.5915838376
    [Google Scholar]
  32. HudecekM. SommermeyerD. KosasihP.L. Silva-BenedictA. LiuL. RaderC. JensenM.C. RiddellS.R. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity.Cancer Immunol. Res.20153212513510.1158/2326‑6066.CIR‑14‑012725212991
    [Google Scholar]
  33. HombachA. HombachA.A. AbkenH. Adoptive immunotherapy with genetically engineered T cells: Modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response.Gene Ther.201017101206121310.1038/gt.2010.9120555360
    [Google Scholar]
  34. JonnalagaddaM. MardirosA. UrakR. WangX. HoffmanL.J. BernankeA. ChangW.C. BretzlaffW. StarrR. PricemanS. OstbergJ.R. FormanS.J. BrownC.E. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy.Mol. Ther.201523475776810.1038/mt.2014.20825366031
    [Google Scholar]
  35. ChandlerN.J. CallM.J. CallM.E. T cell activation machinery: Form and function in natural and engineered immune receptors.Int. J. Mol. Sci.20202119742410.3390/ijms2119742433050044
    [Google Scholar]
  36. SchusterS.J. SvobodaJ. ChongE.A. NastaS.D. MatoA.R. AnakÖ. BrogdonJ.L. Pruteanu-MaliniciI. BhojV. LandsburgD. WasikM. LevineB.L. LaceyS.F. MelenhorstJ.J. PorterD.L. JuneC.H. Chimeric antigen receptor T cells in refractory B-cell lymphomas.N. Engl. J. Med.2017377262545255410.1056/NEJMoa170856629226764
    [Google Scholar]
  37. U.S. Food & Drug Administration. FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome.2017Available from: (Accessed on: 30 August 2017). https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-b-cell-all-and-tocilizumab-cytokine-release-syndrome
  38. KawalekarO.U. O’ConnorR.S. FraiettaJ.A. GuoL. McGettiganS.E. PoseyA.D. PatelP.R. GuedanS. SchollerJ. KeithB. SnyderN.W. BlairI.A. MiloneM.C. JuneC.H. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells.Immunity201644238039010.1016/j.immuni.2016.01.02126885860
    [Google Scholar]
  39. SadelainM. RivièreI. RiddellS. Therapeutic T cell engineering.Nature2017545765542343110.1038/nature2239528541315
    [Google Scholar]
  40. HombachA.A. HeidersJ. FoppeM. ChmielewskiM. AbkenH. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4 + T cells.OncoImmunology20121445846610.4161/onci.1985522754764
    [Google Scholar]
  41. HombachA.A. ChmielewskiM. RapplG. AbkenH. Adoptive immunotherapy with redirected T cells produces CCR7- cells that are trapped in the periphery and benefit from combined CD28-OX40 costimulation.Hum. Gene Ther.201324325926910.1089/hum.2012.24723350854
    [Google Scholar]
  42. GuedanS. ChenX. MadarA. CarpenitoC. McGettiganS.E. FrigaultM.J. LeeJ. PoseyA.D. SchollerJ. SchollerN. BonneauR. JuneC.H. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells.Blood201412471070108010.1182/blood‑2013‑10‑53524524986688
    [Google Scholar]
  43. SongD.G. PowellD.J. Pro-survival signaling via CD27 costimulation drives effective CAR T-cell therapy.OncoImmunology20121454754910.4161/onci.1945822754782
    [Google Scholar]
  44. DuongC.P.M. WestwoodJ.A. YongC.S.M. MurphyA. DevaudC. JohnL.B. DarcyP.K. KershawM.H. Engineering T cell function using chimeric antigen receptors identified using a DNA library approach.PLoS One201385e6303710.1371/journal.pone.006303723667569
    [Google Scholar]
  45. BrockerT. Chimeric Fv-ζ or Fv-ε receptors are not sufficient to induce activation or cytokine production in peripheral T cells.Blood20009651999200110.1182/blood.V96.5.199910961908
    [Google Scholar]
  46. WeinkoveR. GeorgeP. DasyamN. McLellanA.D. Selecting costimulatory domains for chimeric antigen receptors: Functional and clinical considerations.Clin. Transl. Immunology201985e104910.1002/cti2.104931110702
    [Google Scholar]
  47. EshharZ. WaksT. GrossG. SchindlerD.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc. Natl. Acad. Sci. USA199390272072410.1073/pnas.90.2.7208421711
    [Google Scholar]
  48. FirorA.E. JaresA. MaY. From humble beginnings to success in the clinic: Chimeric antigen receptor-modified T-cells and implications for immunotherapy.Exp. Biol. Med. (Maywood)201524081087109810.1177/153537021558493625956686
    [Google Scholar]
  49. ZhangC. LiuJ. ZhongJ.F. ZhangX. Engineering CAR-T cells.Biomark. Res.2017512210.1186/s40364‑017‑0102‑y28652918
    [Google Scholar]
  50. ImaiC. MiharaK. AndreanskyM. NicholsonI.C. PuiC-H. GeigerT.L. CampanaD. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia.Leukemia200418467668410.1038/sj.leu.240330214961035
    [Google Scholar]
  51. MaherJ. BrentjensR.J. GunsetG. RivièreI. SadelainM. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor.Nat. Biotechnol.2002201707510.1038/nbt0102‑7011753365
    [Google Scholar]
  52. JenkinsM.K. BurrellE. AshwellJ.D. Antigen presentation by resting B cells. Effectiveness at inducing T cell proliferation is determined by costimulatory signals, not T cell receptor occupancy.J. Immunol.199014451585159010.4049/jimmunol.144.5.15852307834
    [Google Scholar]
  53. KrauseA. GuoH.F. LatoucheJ.B. TanC. CheungN.K.V. SadelainM. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes.J. Exp. Med.1998188461962610.1084/jem.188.4.6199705944
    [Google Scholar]
  54. LuP. LuX. ZhangX. XiongM. ZhangJ. ZhouX. QiF. YangJ. HeT. Which is better in CD19 CAR-T treatment of r/r B-ALL, CD28 or 4-1BB? A parallel trial under the same manufacturing process.J. Clin. Oncol.20183615_suppl3041304110.1200/JCO.2018.36.15_suppl.3041
    [Google Scholar]
  55. López-CantilloG. UrueñaC. CamachoB.A. Ramírez-SeguraC. CAR-T cell performance: How to improve their persistence?Front. Immunol.20221387820910.3389/fimmu.2022.87820935572525
    [Google Scholar]
  56. MakitaS. YoshimuraK. TobinaiK. Clinical development of anti‐ CD 19 chimeric antigen receptor T‐cell therapy for B‐cell non‐Hodgkin lymphoma.Cancer Sci.201710861109111810.1111/cas.1323928301076
    [Google Scholar]
  57. KorellF. BergerT.R. MausM.V. Understanding CAR T cell-tumor interactions: Paving the way for successful clinical outcomes.Med (N. Y.)20223853856410.1016/j.medj.2022.05.00135963235
    [Google Scholar]
  58. Friedmann-MorvinskiD. BendavidA. WaksT. SchindlerD. EshharZ. Redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation.Blood200510583087309310.1182/blood‑2004‑09‑373715626734
    [Google Scholar]
  59. HuangR. LiX. HeY. ZhuW. GaoL. LiuY. GaoL. WenQ. ZhongJ.F. ZhangC. ZhangX. Recent advances in CAR-T cell engineering.J. Hematol. Oncol.20201318610.1186/s13045‑020‑00910‑532616000
    [Google Scholar]
  60. Abate-DagaD. DavilaM.L. CAR models: Next-generation CAR modifications for enhanced T-cell function.Mol. Ther. Oncolytics201631601410.1038/mto.2016.1427231717
    [Google Scholar]
  61. EggermontL.J. PaulisL.E. TelJ. FigdorC.G. Towards efficient cancer immunotherapy: Advances in developing artificial antigen-presenting cells.Trends Biotechnol.201432945646510.1016/j.tibtech.2014.06.00724998519
    [Google Scholar]
  62. SchubertM.L. SchmittA. NeuberB. Hückelhoven-KraussA. KunzA. WangL. GernU. MichelsB. SellnerL. HofmannS. Müller-TidowC. DregerP. SchmittM. Third-generation CAR T-cells targeting CD19 are associated with an excellent safety profile and might improve persistence of CAR T-cells in treated patients.Blood2019134Suppl. 15110.1182/blood‑2019‑125423
    [Google Scholar]
  63. RamosC.A. RouceR. RobertsonC.S. ReynaA. NaralaN. VyasG. MehtaB. ZhangH. DakhovaO. CarrumG. KambleR.T. GeeA.P. MeiZ. WuM.F. LiuH. GrilleyB. RooneyC.M. HeslopH.E. BrennerM.K. SavoldoB. DottiG. In vivo fate and activity of second- versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas.Mol. Ther.201826122727273710.1016/j.ymthe.2018.09.00930309819
    [Google Scholar]
  64. KünkeleA. JohnsonA.J. RolczynskiL.S. ChangC.A. HoglundV. Kelly-SprattK.S. JensenM.C. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell Fas–FasL-dependent AICD.Cancer Immunol. Res.20153436837910.1158/2326‑6066.CIR‑14‑020025576337
    [Google Scholar]
  65. HombachA.A. RapplG. AbkenH. Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28-OX40 “super-stimulation”.Mol. Ther.201321122268227710.1038/mt.2013.19223985696
    [Google Scholar]
  66. StephanM.T. PonomarevV. BrentjensR.J. ChangA.H. DobrenkovK.V. HellerG. SadelainM. T cell–encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection.Nat. Med.200713121440144910.1038/nm167618026115
    [Google Scholar]
  67. PegramH.J. LeeJ.C. HaymanE.G. ImperatoG.H. TedderT.F. SadelainM. BrentjensR.J. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning.Blood2012119184133414110.1182/blood‑2011‑12‑40004422354001
    [Google Scholar]
  68. KueberuwaG. KalaitsidouM. CheadleE. HawkinsR.E. GilhamD.E. CD19 CAR T-cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity.Mol. Ther. Oncolytics20188415110.1016/j.omto.2017.12.00329367945
    [Google Scholar]
  69. ChmielewskiM. AbkenH. TRUCKs: The fourth generation of CARs.Expert Opin. Biol. Ther.20151581145115410.1517/14712598.2015.104643025985798
    [Google Scholar]
  70. Martínez-LostaoL. AnelA. PardoJ. How do cytotoxic lymphocytes kill cancer cells?Clin. Cancer Res.201521225047505610.1158/1078‑0432.CCR‑15‑068526567364
    [Google Scholar]
  71. LiJ. LiW. HuangK. ZhangY. KupferG. ZhaoQ. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: Lessons learned and strategies for moving forward.J. Hematol. Oncol.20181112210.1186/s13045‑018‑0568‑629433552
    [Google Scholar]
  72. TokarewN. OgonekJ. EndresS. von Bergwelt-BaildonM. KoboldS. Teaching an old dog new tricks: Next-generation CAR T cells.Br. J. Cancer20191201263710.1038/s41416‑018‑0325‑130413825
    [Google Scholar]
  73. KagoyaY. TanakaS. GuoT. AnczurowskiM. WangC.H. SasoK. ButlerM.O. MindenM.D. HiranoN. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects.Nat. Med.201824335235910.1038/nm.447829400710
    [Google Scholar]
  74. MartinezM. MoonE.K. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment.Front. Immunol.20191012810.3389/fimmu.2019.0012830804938
    [Google Scholar]
  75. GuagnanoV. KauffmannA. WöhrleS. StammC. ItoM. BarysL. PornonA. YaoY. LiF. ZhangY. ChenZ. WilsonC.J. BordasV. Le DougetM. GaitherL.A. BorawskiJ. MonahanJ.E. VenkatesanK. BrümmendorfT. ThomasD.M. Garcia-EcheverriaC. HofmannF. SellersW.R. Graus-PortaD. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor.Cancer Discov.20122121118113310.1158/2159‑8290.CD‑12‑021023002168
    [Google Scholar]
  76. RafiqS. HackettC.S. BrentjensR.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy.Nat. Rev. Clin. Oncol.202017314716710.1038/s41571‑019‑0297‑y31848460
    [Google Scholar]
  77. ZhangZ. WangT. WangX. ZhangY. SongS. MaC. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies.Pharmacol. Res.202217510603610.1016/j.phrs.2021.10603634920118
    [Google Scholar]
  78. ChoiB.D. YuX. CastanoA.P. BouffardA.A. SchmidtsA. LarsonR.C. BaileyS.R. BoroughsA.C. FrigaultM.J. LeickM.B. ScarfòI. CetruloC.L. DemehriS. NahedB.V. CahillD.P. WakimotoH. CurryW.T. CarterB.S. MausM.V. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity.Nat. Biotechnol.20193791049105810.1038/s41587‑019‑0192‑131332324
    [Google Scholar]
  79. BielamowiczK. FousekK. ByrdT.T. SamahaH. MukherjeeM. AwareN. WuM.F. OrangeJ.S. SumazinP. ManT.K. JosephS.K. HegdeM. AhmedN. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma.Neuro-oncol.201820450651810.1093/neuonc/nox18229016929
    [Google Scholar]
  80. YangM. TangX. ZhangZ. GuL. WeiH. ZhaoS. ZhongK. MuM. HuangC. JiangC. XuJ. GuoG. ZhouL. TongA. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors.Theranostics202010177622763410.7150/thno.4399132685008
    [Google Scholar]
  81. FioriM.E. Di FrancoS. VillanovaL. BiancaP. StassiG. De MariaR. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance.Mol. Cancer20191817010.1186/s12943‑019‑0994‑230927908
    [Google Scholar]
  82. ZhaoZ. XiaoX. SawP.E. WuW. HuangH. ChenJ. NieY. Chimeric antigen receptor T cells in solid tumors: A war against the tumor microenvironment.Sci. China Life Sci.202063218020510.1007/s11427‑019‑9665‑831883066
    [Google Scholar]
  83. MoonE.K. WangL.C.S. BekdacheK. LynnR.C. LoA. ThorneS.H. AlbeldaS.M. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines.OncoImmunology201873e139599710.1080/2162402X.2017.139599729399394
    [Google Scholar]
  84. YangX. LinY. ShiY. LiB. LiuW. YinW. DangY. ChuY. FanJ. HeR. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling.Cancer Res.201676144124413510.1158/0008‑5472.CAN‑15‑297327216177
    [Google Scholar]
  85. LoA. WangL.C.S. SchollerJ. MonslowJ. AveryD. NewickK. O’BrienS. EvansR.A. BajorD.J. ClendeninC. DurhamA.C. BuzaE.L. VonderheideR.H. JuneC.H. AlbeldaS.M. PuréE. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells.Cancer Res.201575142800281010.1158/0008‑5472.CAN‑14‑304125979873
    [Google Scholar]
  86. ThanindratarnP. DeanD.C. NelsonS.D. HornicekF.J. DuanZ. Chimeric antigen receptor T (CAR-T) cell immunotherapy for sarcomas: From mechanisms to potential clinical applications.Cancer Treat. Rev.20208210193410.1016/j.ctrv.2019.10193431794912
    [Google Scholar]
  87. JainR.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy.Science20053075706586210.1126/science.110481915637262
    [Google Scholar]
  88. LecouterJ. LinR. FerraraN. EG-VEGF: A novel mediator of endocrine-specific angiogenesis, endothelial phenotype, and function.Ann. N. Y. Acad. Sci.200410141505710.1196/annals.1294.00515153419
    [Google Scholar]
  89. ChinnasamyD. YuZ. TheoretM.R. ZhaoY. ShrimaliR.K. MorganR.A. FeldmanS.A. RestifoN.P. RosenbergS.A. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.J. Clin. Invest.2010120113953396810.1172/JCI4349020978347
    [Google Scholar]
  90. DaenenL.G. ShakedY. ManS. XuP. VoestE.E. HoffmanR.M. ChaplinD.J. KerbelR.S. Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models.Mol. Cancer Ther.20098102872288110.1158/1535‑7163.MCT‑09‑058319825805
    [Google Scholar]
  91. YangJ. YanJ. LiuB. Targeting VEGF/VEGFR to modulate antitumor immunity.Front. Immunol.2018997810.3389/fimmu.2018.0097829774034
    [Google Scholar]
  92. LindoL. WilkinsonL.H. HayK.A. Befriending the hostile tumor microenvironment in CAR T-cell therapy.Front. Immunol.20211161838710.3389/fimmu.2020.61838733643299
    [Google Scholar]
  93. ZhangS.Y. SongX.Y. LiY. YeL.L. ZhouQ. YangW.B. Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy.Pharmacol. Res.202016110511110.1016/j.phrs.2020.10511133065284
    [Google Scholar]
  94. DystheM PariharR Myeloid-derived suppressor cells in the tumor microenvironment.Adv. Exp. Med. Biol.2020122411714010.1007/978‑3‑030‑35723‑8_832036608
    [Google Scholar]
  95. WeinbergF. RamnathN. NagrathD. Reactive oxygen species in the tumor microenvironment: An overview.Cancers (Basel)2019118119110.3390/cancers1108119131426364
    [Google Scholar]
  96. FischerK. HoffmannP. VoelklS. MeidenbauerN. AmmerJ. EdingerM. GottfriedE. SchwarzS. RotheG. HovesS. RennerK. TimischlB. MackensenA. Kunz-SchughartL. AndreesenR. KrauseS.W. KreutzM. Inhibitory effect of tumor cell–derived lactic acid on human T cells.Blood200710993812381910.1182/blood‑2006‑07‑03597217255361
    [Google Scholar]
  97. ComitoG. IscaroA. BacciM. MorandiA. IppolitoL. ParriM. MontagnaniI. RaspolliniM.R. SerniS. SimeoniL. GiannoniE. ChiarugiP. Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis.Oncogene201938193681369510.1038/s41388‑019‑0688‑730664688
    [Google Scholar]
  98. GrzywaT.M. SosnowskaA. MatrybaP. RydzynskaZ. JasinskiM. NowisD. GolabJ. Myeloid cell-derived arginase in cancer immune response.Front. Immunol.20201193810.3389/fimmu.2020.0093832499785
    [Google Scholar]
  99. YuJ. DuW. YanF. WangY. LiH. CaoS. YuW. ShenC. LiuJ. RenX. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer.J. Immunol.201319073783379710.4049/jimmunol.120144923440412
    [Google Scholar]
  100. ObermajerN. MuthuswamyR. OdunsiK. EdwardsR.P. KalinskiP. PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment.Cancer Res.201171247463747010.1158/0008‑5472.CAN‑11‑244922025564
    [Google Scholar]
  101. ViganoS. AlatzoglouD. IrvingM. Ménétrier-CauxC. CauxC. RomeroP. CoukosG. Targeting adenosine in cancer immunotherapy to enhance T-cell function.Front. Immunol.20191092510.3389/fimmu.2019.0092531244820
    [Google Scholar]
  102. CekicC. DayY.J. SagD. LindenJ. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment.Cancer Res.201474247250725910.1158/0008‑5472.CAN‑13‑358325377469
    [Google Scholar]
  103. SunR. LuoH. SuJ. DiS. ZhouM. ShiB. SunY. DuG. ZhangH. JiangH. LiZ. Olaparib suppresses MDSC recruitment via SDF1α/CXCR4 axis to improve the anti-tumor efficacy of CAR-T cells on breast cancer in mice.Mol. Ther.2021291607410.1016/j.ymthe.2020.09.03433010818
    [Google Scholar]
  104. FultangL. PanettiS. NgM. CollinsP. GraefS. RizkallaN. BoothS. LentonR. NoyvertB. Shannon-LoweC. MiddletonG. MussaiF. De SantoC. MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers.EBioMedicine20194723524610.1016/j.ebiom.2019.08.02531462392
    [Google Scholar]
  105. PariharR. RivasC. HuynhM. OmerB. LaptevaN. MetelitsaL.S. GottschalkS.M. RooneyC.M. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors.Cancer Immunol. Res.20197336337510.1158/2326‑6066.CIR‑18‑057230651290
    [Google Scholar]
  106. NauschN. GalaniI.E. SchleckerE. CerwenkaA. Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells.Blood2008112104080408910.1182/blood‑2008‑03‑14377618753637
    [Google Scholar]
  107. HuJ. XiaX. ZhaoQ. LiS. Lysine acetylation of NKG2D ligand Rae-1 stabilizes the protein and sensitizes tumor cells to NKG2D immune surveillance.Cancer Lett.202150214315310.1016/j.canlet.2020.12.00233279621
    [Google Scholar]
  108. FengP.H. LamB. TsengS.H. KungY.J. FarmerE. ChengM.A. HungC.F. NKG2D-Fc fusion protein promotes antitumor immunity through the depletion of immunosuppressive cells.Cancer Immunol. Immunother.202069102147215510.1007/s00262‑020‑02615‑732468232
    [Google Scholar]
  109. KuraharaH. TakaoS. KuwahataT. NagaiT. DingQ. MaedaK. ShinchiH. MatakiY. MaemuraK. MatsuyamaT. NatsugoeS. Clinical significance of folate receptor β-expressing tumor-associated macrophages in pancreatic cancer.Ann. Surg. Oncol.20121972264227110.1245/s10434‑012‑2263‑022350599
    [Google Scholar]
  110. Rodriguez-GarciaA. LynnR.C. PoussinM. EivaM.A. ShawL.C. O’ConnorR.S. MinutoloN.G. Casado-MedranoV. LopezG. MatsuyamaT. PowellD.J. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy.Nat. Commun.202112187710.1038/s41467‑021‑20893‑233563975
    [Google Scholar]
  111. StüberT. MonjeziR. WallstabeL. KühnemundtJ. NietzerS.L. DandekarG. WöckelA. EinseleH. WischhusenJ. HudecekM. Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J. Immunother. Cancer202081e00067610.1136/jitc‑2020‑00067632303620
    [Google Scholar]
  112. TangN. ChengC. ZhangX. QiaoM. LiN. MuW. WeiX.F. HanW. WangH. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors.JCI Insight202054e13397710.1172/jci.insight.13397731999649
    [Google Scholar]
  113. GiannoneG. GhisoniE. GentaS. ScottoG. TuninettiV. TurinettoM. ValabregaG. Immuno-metabolism and microenvironment in cancer: Key players for immunotherapy.Int. J. Mol. Sci.20202112441410.3390/ijms2112441432575899
    [Google Scholar]
  114. LeoneR.D. EmensL.A. Targeting adenosine for cancer immunotherapy.J. Immunother. Cancer2018615710.1186/s40425‑018‑0360‑829914571
    [Google Scholar]
  115. LiN. TangN. ChengC. HuT. WeiX. HanW. WangH. Improving the anti-solid tumor efficacy of CAR-T cells by inhibiting adenosine signaling pathway.OncoImmunology202091182464310.1080/2162402X.2020.182464333457103
    [Google Scholar]
  116. GiuffridaL. SekK. HendersonM.A. LaiJ. ChenA.X.Y. MeyranD. ToddK.L. PetleyE.V. MardianaS. MølckC. StewartG.D. SolomonB.J. ParishI.A. NeesonP.J. HarrisonS.J. KatsL.M. HouseI.G. DarcyP.K. BeavisP.A. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy.Nat. Commun.2021121323610.1038/s41467‑021‑23331‑534050151
    [Google Scholar]
  117. MasoumiE. JafarzadehL. MirzaeiH.R. AlishahK. Fallah-MehrjardiK. RostamianH. Khakpoor-KooshehM. MeshkaniR. NoorbakhshF. HadjatiJ. Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells.J. Exp. Clin. Cancer Res.20203914910.1186/s13046‑020‑01546‑632151275
    [Google Scholar]
  118. QuY. DunnZ.S. ChenX. MacMullanM. CinayG. WangH. LiuJ. HuF. WangP. Adenosine deaminase 1 overexpression enhances the antitumor efficacy of chimeric antigen receptor-engineered T cells.Hum. Gene Ther.2022335-622323610.1089/hum.2021.05034225478
    [Google Scholar]
  119. LigtenbergM.A. MougiakakosD. MukhopadhyayM. WittK. LladserA. ChmielewskiM. RietT. AbkenH. KiesslingR. Coexpressed catalase protects chimeric antigen receptor–redirected T cells as well as bystander cells from oxidative stress–induced loss of antitumor activity.J. Immunol.2016196275976610.4049/jimmunol.140171026673145
    [Google Scholar]
  120. Uscanga-PalomequeA.C. Chávez-EscamillaA.K. Alvizo-BáezC.A. Saavedra-AlonsoS. Terrazas-ArmendárizL.D. Tamez-GuerraR.S. Rodríguez-PadillaC. Alcocer-GonzálezJ.M. CAR-T cell therapy: From the shop to Cancer therapy.Int. J. Mol. Sci.202324211568810.3390/ijms24211568837958672
    [Google Scholar]
  121. GrosserR. CherkasskyL. ChintalaN. AdusumilliP.S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors.Cancer Cell201936547148210.1016/j.ccell.2019.09.00631715131
    [Google Scholar]
  122. WuX. GuZ. ChenY. ChenB. ChenW. WengL. LiuX. Application of PD-1 blockade in cancer immunotherapy.Comput. Struct. Biotechnol. J.20191766167410.1016/j.csbj.2019.03.00631205619
    [Google Scholar]
  123. GranierC. De GuillebonE. BlancC. RousselH. BadoualC. ColinE. SaldmannA. GeyA. OudardS. TartourE. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer.ESMO Open201722e00021310.1136/esmoopen‑2017‑00021328761757
    [Google Scholar]
  124. LiuJ. JiaoX. MaD. FangY. GaoQ. CAR-T therapy and targeted treatments: Emerging combination strategies in solid tumors.Med (N. Y.)20245653054910.1016/j.medj.2024.03.00138547867
    [Google Scholar]
  125. AdusumilliP.S. CherkasskyL. Villena-VargasJ. ColovosC. ServaisE. PlotkinJ. JonesD.R. SadelainM. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity.Sci. Transl. Med.20146261261ra15110.1126/scitranslmed.301016225378643
    [Google Scholar]
  126. AndreaA.E. ChironA. MallahS. BessolesS. SarrabayrouseG. Hacein-Bey-AbinaS. Advances in CAR-T cell genetic engineering strategies to overcome hurdles in solid tumors treatment.Front. Immunol.20221383029210.3389/fimmu.2022.83029235211124
    [Google Scholar]
  127. WeinsteinB. MuresanB. SolanoS. Vaz de MacedoA. LeeY. SuY.C. AhnY. HenriquezG. CarmagoC. KimG.J. CarpenterD.O. Efficacy and safety of innovative experimental chimeric antigen receptor (CAR) T-cells versus axicabtagene ciloleucel (Yescarta) for the treatment of relapsed/refractory large B-cell lymphoma (LBCL): Matching adjusted indirect comparisons (MAICs) and systematic review.Innov. Pharm.20211241810.24926/iip.v12i4.434536033121
    [Google Scholar]
  128. AkbariP. KatsarouA. DaghighianR. van MilL.W.H.G. HuijbersE.J.M. GriffioenA.W. van BeijnumJ.R. Directing CAR T cells towards the tumor vasculature for the treatment of solid tumors.Biochim. Biophys. Acta Rev. Cancer20221877318870110.1016/j.bbcan.2022.18870135202772
    [Google Scholar]
  129. HuangZ. DewanjeeS. ChakrabortyP. JhaN.K. DeyA. GangopadhyayM. ChenX.Y. WangJ. JhaS.K. CAR T cells: Engineered immune cells to treat brain cancers and beyond.Mol. Cancer20232212210.1186/s12943‑022‑01712‑836721153
    [Google Scholar]
  130. QinV.M. HaynesN.M. D’SouzaC. NeesonP.J. ZhuJ.J. CAR-T plus radiotherapy: A promising combination for immunosuppressive tumors.Front. Immunol.20221281383210.3389/fimmu.2021.81383235095911
    [Google Scholar]
/content/journals/csci/10.2174/0127726215340105250124053210
Loading
/content/journals/csci/10.2174/0127726215340105250124053210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test