Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2950-4910
  • E-ISSN: 2950-4902

Abstract

Introduction

Geographical location plays a crucial role in the distribution and potency of medicinal plants. Chemical composition of plants and their medicinal properties can be significantly influenced by climate and soil composition. The present objective is to investigate the manifestation in phytocompounds of L. root originating from different biogeographical locations in the Indian subcontinent. is traditionally used to treat chronic pyrexia and puerperal fever, along with reducing the heat and itching in various skin diseases. Other therapeutic benefits include immune-modulatory, analgesic, diuretic, hepatoprotective, nephroprotective, gastroprotective, wound-healing, and antiviral properties.

Methods

This study establishes a qualitative profile and analyzes the amount of rubiadin in the root of L. across four different biogeographical zones by using a reproducible and validated HPTLC method.

Results

The study revealed phytochemical arrays are not identical for plants of different zones and that the quantity of rubiadin was highest (0.73%) and lowest (0.27%) in the plants grown in the Deccan Plateau region and northeast region, respectively.

Discussion

The study demonstrates that the Indian subcontinent boasts a rich tapestry of biodiversity, and this diversity is reflected in the array of phytocompounds found across its various biogeographical regions, mainly due to climate and soil characteristics.

Conclusion

This information can be valuable for applications in agriculture, pharmaceuticals, and environmental studies because understanding the distribution and concentration of phytocompounds across different locations can have numerous applications in these fields.

Loading

Article metrics loading...

/content/journals/csch/10.2174/0129504910378059250714100323
2025-07-18
2025-12-07
Loading full text...

Full text loading...

References

  1. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.00177 24454289
    [Google Scholar]
  2. AdegbajuO.D. OtunolaG.A. AfolayanA.J. Effects of growth stage and seasons on the phytochemical content and antioxidant activities of crude extracts of Celosia argentea L.Heliyon2020660408610.1016/j.heliyon.2020.e04086 32514483
    [Google Scholar]
  3. HazraK. MandalA.K. MondalD.N. RavteR.K. HazraJ. RaoM.M. Seasonal dynamics of Shatavarin-IV, a potential biomarker of Asparagus racemosus by HPTLC: Possible validation of the ancient Ayurvedic text.Indian J. Tradit. Knowl.201919117418110.56042/ijtk.v19i1.30864
    [Google Scholar]
  4. HuJ. HuangW. ZhangF. LuoX. ChenY. XieJ. Variability of volatile compounds in the medicinal plant Dendrobium officinale from different regions.Molecules20202521504610.3390/molecules25215046 33143136
    [Google Scholar]
  5. ChauhanR.S. NautiyalM.C. CecottiR. MellaM. TavaA. Variation in the essential oil composition of Angelica archangelica from three different altitudes in Western Himalaya, India.Ind. Crops Prod.20169440140410.1016/j.indcrop.2016.08.044
    [Google Scholar]
  6. TiwariV. MeenaB. NairK.N. UpretiD.K. TamtaS. RanaT.S. Assessment of genetic diversity and population structure of Bergenia stracheyi (Saxifragaceae) in the Western Himalaya (India).Biochem. Syst. Ecol.20177020521010.1016/j.bse.2016.12.001
    [Google Scholar]
  7. Mohammadi BazarganiM. Falahati-AnbaranM. RohloffJ. Comparative analyses of phytochemical variation within and between congeneric species of willow herb, Epilobium hirsutum and E. parviflorum: Contribution of environmental factors.Front Plant. Sci.20211159519010.3389/fpls.2020.595190 33679815
    [Google Scholar]
  8. ManiM.S. Biogeographical evolution in India.In: Ecology and Biogeography in India Monographiae Biologicae 23. ManiM.S. DordrechtSpringer1974177310.1007/978‑94‑010‑2331‑3_24
    [Google Scholar]
  9. UdvardyM.D.F. A classifications of Biogeographical provinces of the World.1st edSwitzerlandIUCN19952829
    [Google Scholar]
  10. KhareC.P. Springer: Berlin Meidelberg2004406407
  11. Anonymous Ayurvedic Pharmacopoeia of India; Ministry of Health and Family Welfare, Government of India: New Delhi20033111112
    [Google Scholar]
  12. Anonymous Ayurvedic Pharmacopoeia of India; Ministry of Health and Family Welfare, Government of India: New Delhi200821315
    [Google Scholar]
  13. Anonymous Unani Pharmacopoeia of India; Ministry of Health and Family Welfare, Government of India: New Delhi200748990
    [Google Scholar]
  14. AliA. AslamM. ChaudharyS.S. A review a review on pharmacognostic and therapeutic uses of Rubia cordifolia.J. Drug Deliv. Ther.202010619520210.22270/jddt.v10i6.4514
    [Google Scholar]
  15. GogatV.U. RamkrishnanS. Ayurvedic Pharmacology and Therapeutic Uses of Medicinal Plants (Dravya-gunavignyan).1st EdMumbaiSwami Prakashananda Ayurveda Research Centre2000121125
    [Google Scholar]
  16. LodiaS. KansalaL. Antioxidant activity of Rubia cordifolia against lead toxicity.Int. J. Pharm. Sci. Res.2012322242225
    [Google Scholar]
  17. PrajapatiS.N. ParmarK.A. Anti-viral and in-vitro free radical scavenging activity of leaves of Rubia cordifolia.Int. J. Phytomed.2011398102
    [Google Scholar]
  18. WatrolyM.N. SekarM. FuloriaS. GanS.H. JeyabalanS. WuY.S. SubramaniyanV. SathasivamK.V. RaviS. Mat RaniN.N.I. LumP.T. VaijanathappaJ. MeenakshiD.U. ManiS. FuloriaN.K. Chemistry, biosynthesis, physicochemical and biological properties of rubiadin: A promising natural anthraquinone for new drug discovery and development.Drug Des. Devel. Ther.2021154527454910.2147/DDDT.S338548 34764636
    [Google Scholar]
  19. WenM. ChenQ. ChenW. YangJ. ZhouX. ZhangC. WuA. LaiJ. ChenJ. MeiQ. YangS. LanC. WuJ. HuangF. WangL. A comprehensive review of Rubia cordifolia L.: Traditional uses, phytochemistry, pharmacological activities, and clinical applications.Front. Pharmacol.20221396539010.3389/fphar.2022.965390 36160419
    [Google Scholar]
  20. CominiL.R. FernandezI.M. VittarN.B.R. Núñez MontoyaS.C. CabreraJ.L. RivarolaV.A. Photodynamic activity of anthraquinones isolated from Heterophyllaea pustulata Hook f. (Rubiaceae) on MCF-7c3 breast cancer cells.Phytomedicine201118121093109510.1016/j.phymed.2011.05.008 21665453
    [Google Scholar]
  21. Rumie VittarN.B. CominiL. FernadezI.M. AgostiniE. Nuñez-MontoyaS. CabreraJ.L. RivarolaV.A. Photochemotherapy using natural anthraquinones: Rubiadin and soranjidiol sensitize human cancer cell to die by apoptosis.Photodiagn. Photodyn. Ther.201411218219210.1016/j.pdpdt.2014.02.002 24561303
    [Google Scholar]
  22. MohrE.T.B. dos Santos NascimentoM.V.P. da RosaJ.S. VieiraG.N. KretzerI.F. SandjoL.P. DalmarcoE.M. Evidence that the anti-inflammatory effect of rubiadin-1-methyl ether has an immunomodulatory context.Mediators Inflamm.2019201911210.1155/2019/6474168 31780865
    [Google Scholar]
  23. BaghianiA. CharefN. DjarmouniM. SaadehH.A. ArrarL. MubarakM.S. Free radical scanvenging and antioxidant effects of some anthraquinone derivatives.Med. Chem.20117663964410.2174/157340611797928424 22313303
    [Google Scholar]
  24. RaoG.M.M. RaoC.V. PushpangadanP. ShirwaikarA. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn.J. Ethnopharmacol.2006103348449010.1016/j.jep.2005.08.073 16213120
    [Google Scholar]
  25. TinkuM. MujeebM. AhadA. AqilM. SiddiquiW.A. NajmiA.K. AkhtarM. ShrivastaA. QadirA. MoolakkadthT. Ameliorative effect of rubiadin-loaded nanocarriers in STZ-NA-induced diabetic nephropathy in rats: Formulation optimization, molecular docking, and in vivo biological evaluation.Drug Deliv. Transl. Res.2021202111410.1007/s13346‑021‑00971‑0 34013457
    [Google Scholar]
  26. MarioniJ. DaSilvaMA. CabreraJL. MontoyaSCN. ParajeMG. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation.Phytomedicine201623121321132810.1016/j.phymed.2016.07.008
    [Google Scholar]
  27. LikhitwitayawuidK. Dej-adisaiS. JongbunprasertV. KrungkraiJ. Antimalarials from Stephania venosa, Prismatomeris sessiliflora, Diospyros montana and Murraya siamensis1.Planta Med.199965875475610.1055/s‑2006‑960858 10630122
    [Google Scholar]
  28. CominiL.R. Núñez MontoyaS.C. PáezP.L. ArgüelloG.A. AlbesaI. CabreraJ.L. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae).J. Photochem. Photobiol. B2011102210811410.1016/j.jphotobiol.2010.09.009 20965744
    [Google Scholar]
  29. PengZ. FangG. PengF. PanZ. SuZ. TianW. LiD. HouH. Effects of Rubiadin isolated from Prismatomeris connata on anti‐hepatitis B virus activity in vitro.Phytother. Res.201731121962197010.1002/ptr.5945 29044868
    [Google Scholar]
  30. BhusnarH.U. KadamP.V. ShivatareR.S. PatilM.J. Development of HPTLC method for quantitative determination of rubiadin in different extracts of Rubia cordifolia.Pharm. Anal. Qua Assur2014417
    [Google Scholar]
  31. EssaidiI. SnoussiA. Ben Haj KoubaierH. CasabiancaH. BouzouitaN. Effect of acid hydrolysis on alizarin content, antioxidant and antimicrobial activities of Rubia tinctorum extracts.Pigm. Resin Technol.201746537938410.1108/PRT‑11‑2015‑0116
    [Google Scholar]
  32. WangZ. MaP. XuL. HeC. PengY. XiaoP. Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA.Chem. Cent. J.20137117018010.1186/1752‑153X‑7‑170 24160332
    [Google Scholar]
  33. FarooqU. PandithS.A. Singh SaggooM.I. LattooS.K. Altitudinal variability in anthraquinone constituents from novel cytotypes of Rumex nepalensis Spreng—a high value medicinal herb of North Western Himalayas.Ind. Crops Prod.20135011211710.1016/j.indcrop.2013.06.044
    [Google Scholar]
  34. ZengL. YanX. XuY. ZhengL. DengW. LiM. LiH. WangZ. Comprehensive characterization of anthraquinones in Damnacanthus indicus using mass spectrometry molecular networking and metabolomics-based herb discrimination.RSC Advances20241451379113792410.1039/D4RA06732K 39610812
    [Google Scholar]
  35. Anonymous Dictionary of Indian Medicinal Palnts.1st edLucknowCentral Institute of Medicinal and Aromatic Plants1992395396
    [Google Scholar]
  36. Anonymous The Treatise of Indian Medicinal Palnts 1st Ed; National Institute of Science Communication: New Delhi199759899
    [Google Scholar]
  37. KhareC.P. Indian Medicinal Plants: An Illustrated Dictionary.1st EdNew DelhiSpringer2007989910.1007/978‑0‑387‑70638‑2
    [Google Scholar]
  38. AhvaziM. Khalighi-SigaroodiF. CharkhchiyanM.M. MojabF. MozaffarianV.A. ZakeriH. Introduction of medicinal plants species with the most traditional usage in Alamut region.Iran. J. Pharm. Res.2012111185194 24250441
    [Google Scholar]
  39. SiddiquiA. TajuddinT. AminK.M.Y. ZuberiR.H. JamalA. Standardization of Majith (Rubia cordifolia Linn.).Indian J. Tradit. Knowl.201110330333
    [Google Scholar]
  40. KhodkeA.S. PotaleL.V. PatoleS.M. DamleM.C. A Validated Isocratic RP-HPLC Method determination for rubiadin in the roots of Rubia cordifolia Linn.Int. J. Chemtech Res.2010222562260
    [Google Scholar]
  41. PatelV.R. PatelR.K. Simultaneous analysis and quantification of markers of manjisthadi churna using high performance thin layer chromatography.Indian J. Pharm. Sci.201375110610910.4103/0250‑474X.113541 23901170
    [Google Scholar]
  42. ZarinD.J. GuoH. Enu-KwesiL. Methods for the assessment of plant species diversity in complex agricultural landscapes: Guidelines for data collection and analysis from the PLEC biodiversity advisory group (BAG).PLEC News Views199913316
    [Google Scholar]
  43. VoglC.R. Vogl-LukasserB. PuriR.K. Tools and methods for data collection in ethnobotanical studies of homegardens.Field Methods200416328530610.1177/1525822X04266844
    [Google Scholar]
  44. SmithB. ChinnappaC. Plant Collection, Identification, and Herbarium Procedures.In: Plant. Microtechniques and Protocols. YeungE. StasollaC. SumnerM. HuangB. ChamSpringer201554157210.1007/978‑3‑319‑19944‑3_30
    [Google Scholar]
  45. HodgeW.H. The use of alcohol in plant collecting.Rhodora194749207210
    [Google Scholar]
  46. van RheenenH.A. BhattiS. RaoK.V.S. The sustainable preservation of biodiversity in self-pollinating plant species: Sample size and collection methodology.Plant Genet. Resour. Newsl.19939614
    [Google Scholar]
  47. Anonymous Quality control methods for herbal materials.GenevaWorld Health Organization20116569
    [Google Scholar]
  48. HazraK. KumarD. DebnathS. MondalS. BatuleM. DuttaS. SinghA. SinghR. MangalA.K. Dynamicity and extractability of hydro-alcoholic solvents for Tinospora cordifolia stem: An investigation for target-oriented traditional drug discovery based on biologically active phytocompounds.Vegetos202411110.1007/s42535‑024‑00835‑1
    [Google Scholar]
  49. HazraK. KumarD. MitraA. DuttaS. SarkarS. BabuG. Phytopharmacognostic profiling of Prunus cerasoides Buch.-Ham. ex D. Don, heartwood.Indian J. Nat. Prod. Resour.20241511210.56042/ijnpr.v15i1.4232
    [Google Scholar]
  50. HazraK. MitraA. SinghR. SinghA. HazraJ. Rationalisation of extractive protocol by high-performance thin-layer chromatographic–densitometric quantification of berberine in multiple hydroalcoholic extract of Tinospora cordifolia stem.J. Planar Chromatogr. Mod. TLC202134215716310.1007/s00764‑021‑00098‑5
    [Google Scholar]
  51. Harmonised TripartiteGuideline text on validation of analytical procedures.Proceedings of the International Conference on Harmonization1994
    [Google Scholar]
  52. Harmonised TripartiteGuideline validation of analytical procedure: Methodology.Proceedings of the International Conference on Harmonization1996
    [Google Scholar]
  53. AdhikariP. JoshiK. SinghM. PandeyA. Influence of altitude on secondary metabolites, antioxidants, and antimicrobial activities of Himalayan yew (Taxus wallichiana).Plant Biosyst.2022156118719510.1080/11263504.2020.1845845
    [Google Scholar]
  54. LunguE.M. Woldeamlak Bewket; Edward, M.L.; Woldeamlak, B. Effects of temperature and rainfall in plant–herbivore interactions at different altitude.Ecol. Modell.2019406505910.1016/j.ecolmodel.2019.05.011
    [Google Scholar]
  55. TiwariD. KewlaniP. GairaK.S. BhattI.D. SundriyalR.C. PandeV. Predicting phytochemical diversity of medicinal and aromatic plants (MAPs) across eco-climatic zones and elevation in Uttarakhand using Generalized Additive Model.Sci. Rep.2023131108881089810.1038/s41598‑023‑37495‑1 37407604
    [Google Scholar]
  56. PalitP. MandalS.C. Climate change, geographical location, and other allied triggering factors modulate the standardization and characterization of traditional medicinal plants: A challenge and prospect for phyto-drug development.In: Evidence Based Validation of Traditional Medicines. MandalS.C. ChakrabortyR. SenS. SingaporeSpringer202135937810.1007/978‑981‑15‑8127‑4_18
    [Google Scholar]
  57. HamidM. KhurooA.A. MalikA.H. AhmadR. SinghC.P. Elevation and aspect determine the differences in soil properties and plant species diversity on Himalayan mountain summits.Ecol. Res.202136234035210.1111/1440‑1703.12202
    [Google Scholar]
  58. IsmailN.Z. ArsadH. SamianM.R. HamdanM.R. Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (acanthaceae) in different locations.AGRIVITA Journal of Agricultural Science201739333534410.17503/agrivita.v39i3.1076
    [Google Scholar]
  59. RutiglianoF.A. D’AscoliR. Virzo De SantoA. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover.Soil Biol. Biochem.200436111719172910.1016/j.soilbio.2004.04.029
    [Google Scholar]
  60. KaurT. BhatR. VyasD. Effect of contrasting climates on antioxidant and bioactive constituents in five medicinal herbs in Western Himalayas.J. Mt. Sci.201613348449210.1007/s11629‑014‑3380‑y
    [Google Scholar]
  61. PantP. PandeyS. Dall’AcquaS. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review.Chem. Biodivers.20211811210034510.1002/cbdv.202100345 34533273
    [Google Scholar]
  62. e, D.S.R.R. A complete review on Rubia cordifolia Inter J. Trend Scient Res. Devel2018 221161117010.31142/ijtsrd9616
    [Google Scholar]
  63. WangY. LiuH. YuS. HuangY. ZhangY. HeX. ChenW. Changes in marker secondary metabolites revealed the medicinal parts, harvest time, and possible synthetic sites of Rubia cordifolia L.Plant Physiol. Biochem.202320310802410.1016/j.plaphy.2023.108024 37699290
    [Google Scholar]
  64. ReportsS.L.U.S.I. ; :Farmers Welfare, India2024
    [Google Scholar]
/content/journals/csch/10.2174/0129504910378059250714100323
Loading
/content/journals/csch/10.2174/0129504910378059250714100323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test