Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2950-4910
  • E-ISSN: 2950-4902

Abstract

Chromatography is a very useful separation method that may be used for characterization, isolation/purification, and chemical and nanoparticle analysis. It has completely changed how many industries do research and development. This comprehensive study looks at its increasing importance in nanotechnology and its applications in the fields of biological sciences, pharmacology, environmental science, and industry. In the pharmaceutical business, chromatography is used to detect contaminants, guarantee drug quality, and support pharmacokinetic research. It evaluates pesticide residues, finds poisons in environmental assessments, and identifies contaminants in the air and water. Chromatography is employed in forensic science for drug testing, examination of trace evidence, and arson investigations. Chromatography is used in the food and beverage industries for quality control and taste profiling, and in the life sciences for protein separation and identification. Chromatography is used in biological research for the separation of complex mixtures and the purification of biomolecules. It is used in the industrial sector to assess petroleum products, evaluate the quality of cosmetic chemicals, and describe polymers. Because it enables the separation and analysis of nanoparticles for use in synthesis, characterization, and nanotechnology, chromatography is also becoming more and more popular in this sector. This article emphasises chromatography's enormous influence across a number of sectors as well as its developing importance in nanotechnology. Chromatographic techniques will continue to advance and change, paving the way for fresh investigations and altering the landscape of academia and business.

Loading

Article metrics loading...

/content/journals/csch/10.2174/0129504910373441250705161626
2025-07-09
2025-12-07
Loading full text...

Full text loading...

References

  1. SkoogD.A. HollerF.J. CrouchS.R. WestD.M. Fundamentals of Analytical Chemistry.Boston, MassachusettsCengage Learning2013
    [Google Scholar]
  2. SnyderL.R. KirklandJ.J. DolanJ.W. Introduction to Modern Liquid Chromatography.Hoboken, New Jersey, Canada2010202
    [Google Scholar]
  3. HarrisD.C. Quantitative Chemical Analysis.8th EdNew YorkW.H. Freeman and Company2010
    [Google Scholar]
  4. WallaceR.G. RochfortK.D. Ion-exchange chromatography: basic principles and application.Methods Mol. Biol.2023269916117710.1007/978‑1‑0716‑3362‑5_9 37646998
    [Google Scholar]
  5. KanuA.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review.J. Chromatogr. A2021165446244410.1016/j.chroma.2021.462444 34380070
    [Google Scholar]
  6. Pankajkumar-PatelN. Peris-GarcíaE. Ruiz-AngelM.J. Carda-BrochS. García-Alvarez-CoqueM.C. Modulation of retention and selectivity in oil-in-water microemulsion liquid chromatography: A review.J. Chromatogr. A201915929110010.1016/j.chroma.2019.01.046 30704775
    [Google Scholar]
  7. BroeckhovenK. DesmetG. Theory of separation performance and peak width in gradient elution liquid chromatography: A tutorial.Anal. Chim. Acta2022121833996210.1016/j.aca.2022.339962 35701036
    [Google Scholar]
  8. Pérez-FernándezV. Mainero RoccaL. TomaiP. FanaliS. GentiliA. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry.Anal. Chim. Acta201798394110.1016/j.aca.2017.06.029 28811032
    [Google Scholar]
  9. PatelM. Chromatography principle and applications.Int. J. Pharm. Pharm. Res.2018134288293
    [Google Scholar]
  10. FanaliS. HaddadP.R. PooleC.F. RiekkolaM-L. Applications.In: Handbooks in Separation Science: Liquid Chromatography.Amsterdam, NetherlandsElsevier2017
    [Google Scholar]
  11. WeldonR. Müller-SpäthT. Enrichment and purification of peptide impurities using twin-column continuous chromatography.J. Chromatogr. A2022166746289410.1016/j.chroma.2022.462894 35219108
    [Google Scholar]
  12. ChengY. WuP. KanY. LiM. LiH. Identification and determination of structurally related peptide impurities in thymalfasin by liquid chromatography-high-resolution mass spectrometry.Anal. Bioanal. Chem.2022414288035804510.1007/s00216‑022‑04336‑5 36207535
    [Google Scholar]
  13. NwabufoC.K. AigbogunO.P. Potential application of mass spectrometry imaging in pharmacokinetic studies.Xenobiotica202252881182710.1080/00498254.2022.2119900 36048000
    [Google Scholar]
  14. OzawaS. ChenH.H. LeeY.F.A. HigginsC.R. YemekeT.T. Characterizing medicine quality by active pharmaceutical ingredient levels: A systematic review and meta-analysis across low- and middle-income countries.Am. J. Trop. Med. Hyg.202210661778179010.4269/ajtmh.21‑1123 35895431
    [Google Scholar]
  15. KupiecT. Quality-control analytical methods: High-performance liquid chromatography.Int. J. Pharm. Compd.200483223227 23924674
    [Google Scholar]
  16. TannaS. LawsonG. Analytical Chemistry for Assessing Medication Adherence.Amsterdam, NetherlandsElsevier2016
    [Google Scholar]
  17. SaibabaS.V. KumarM.S. RamuB. Pharmaceutical impurities and their characterization: A review.Eur. J. Pharm. Med. Res.201635190196
    [Google Scholar]
  18. KalauzA. KapuiI. Determination of potentially genotoxic impurities in crotamiton active pharmaceutical ingredient by gas chromatography.J. Pharm. Biomed. Anal.202221011454410.1016/j.jpba.2021.114544 34968997
    [Google Scholar]
  19. WoldemariamG. KyadA. MooreS. QiuJ. SeminD. TanZ.J. WypychJ. Development and validation of a HPLC-UV method for urea and related impurities.PDA J. Pharm. Sci. Technol.202074121410.5731/pdajpst.2018.009803 31209168
    [Google Scholar]
  20. WalkerD.K. The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development.Br. J. Clin. Pharmacol.200458660160810.1111/j.1365‑2125.2004.02194.x 15563358
    [Google Scholar]
  21. GhoshS. ChakrabortyB.S. SinghS. Advances in liquid chromatography-mass spectrometry for quantitative bioanalysis in pharmacokinetic studies.J. Pharm. Anal.2020104307321
    [Google Scholar]
  22. ShargelL. Wu-PongS. YuA.C. In: Chapter 20application of pharmacokinetics to clinical situations.6th EdBeijing, LondonMcGraw Hill2012
    [Google Scholar]
  23. Cortés-HerreraC. ArtaviaG. LeivaA. Granados-ChinchillaF. Liquid chromatography analysis of common nutritional components, in feed and food.Foods201881110.3390/foods8010001 30577557
    [Google Scholar]
  24. AadilR.M. MadniG.M. RoobabU. Quality control in beverage production: An overview.In: Quality Control in the Beverage Industry.United StatesAcademic Press2019138
    [Google Scholar]
  25. Zamani MazdehF. SasanfarS. ChalipourA. PirhadiE. YahyapourG. MohammadiA. RostamiA. AminiM. HajimahmoodiM. Simultaneous determination of preservatives in dairy products by HPLC and chemometric analysis.Int. J. Anal. Chem.201720171810.1155/2017/3084359 28473855
    [Google Scholar]
  26. WelkeJ.E. HernandesK.C. NicolliK.P. BarbaráJ.A. BiasotoA.C.T. ZiniC.A. Role of gas chromatography and olfactometry to understand the wine aroma: Achievements denoted by multidimensional analysis.J. Sep. Sci.202144113516810.1002/jssc.202000813 33245848
    [Google Scholar]
  27. FengT. SunJ. WangK. SongS. ChenD. ZhuangH. LuJ. LiD. MengX. ShiM. YaoL. HoC.T. Variation in volatile compounds of raw pu-erh tea upon steeping process by gas chromatography-ion mobility spectrometry and characterization of the aroma-active compounds in tea infusion using gas chromatography-olfactometry-mass spectrometry.J. Agric. Food Chem.20227042137411375310.1021/acs.jafc.2c04342 36225119
    [Google Scholar]
  28. SpeightJ.G. Handbook of petroleum product analysis.:Hoboken, New Jersey2015
    [Google Scholar]
  29. NizioK.D. HarynukJ.J. Analysis of alkyl phosphates in petroleum samples by comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection and post-column Deans switching.J. Chromatogr. A2012125217117610.1016/j.chroma.2012.06.070 22776725
    [Google Scholar]
  30. KuvshinovaS.A. BurmistrovV.A. NovikovI.V. AlexandriyskyV.V. KoifmanO.I. Selectivity, thermodynamic and anisotropic properties of substituted liquid-crystal cyanoazoxybenzenes as stationary phases for gas chromatography.J. Chromatogr. Sep. Tech.201673142
    [Google Scholar]
  31. PanicoA. SerioF. BagordoF. GrassiT. IdoloAD.E. GiorgiM. GuidoM. CongedoM.DE. DonnoA. Skin safety and health prevention: An overview of chemicals in cosmetic products.J. Prev. Med. Hyg.2019601E50E57 31041411
    [Google Scholar]
  32. ChangN.I. YooM.Y. LeeS.H. Determination of fourteen sunscreen agents in cosmetics using high‐performance liquid chromatography.Int. J. Cosmet. Sci.201537217518010.1111/ics.12171 25376702
    [Google Scholar]
  33. HallaN. FernandesI.P. HelenoS.A. CostaP. Boucherit-OtmaniZ. BoucheritK. RodriguesA.E. FerreiraI.C.F.R. BarreiroM.F. Cosmetics preservation: A review on present strategies.Molecules2018237157110.3390/molecules23071571 29958439
    [Google Scholar]
  34. BalaguerA. SalvadorA. ChisvertA. A rapid and reliable size-exclusion chromatographic method for determination of kojic dipalmitate in skin-whitening cosmetic products.Talanta200875240741110.1016/j.talanta.2007.11.021 18371899
    [Google Scholar]
  35. SperlingL.H. Introduction to Physical Polymer Science.Hoboken, New Jersey200510.1002/0471757128
    [Google Scholar]
  36. PennyW.M. PalmerC.P. Determination of lipid bilayer affinities and solvation characteristics by electrokinetic chromatography using polymer‐bound lipid bilayer nanodiscs.Electrophoresis2018395-684485210.1002/elps.201700308 29072338
    [Google Scholar]
  37. WangY. XiaoJ. CaoJ. Preparation and modification of PS-PMMA microspheres and their application in high performance liquid chromatography.Anal. Methods202214403999400710.1039/D2AY01425D
    [Google Scholar]
  38. IbadatN.F. OngkudonC.M. SaallahS. MissonM. Synthesis and characterization of polymeric microspheres template for a homogeneous and porous monolith.Polymers20211321363910.3390/polym13213639 34771196
    [Google Scholar]
  39. JonssonM. NyströmD. NordinO. MalmströmE. Surface modification of thermally expandable microspheres by grafting poly(glycidyl methacrylate) using ARGET ATRP.Eur. Polym. J.20094582374238210.1016/j.eurpolymj.2009.05.002
    [Google Scholar]
  40. MengF. EngbersG.H.M. FeijenJ. Polyethylene glycol-grafted polystyrene particles.J. Biomed. Mater. Res. A200470A1495810.1002/jbm.a.30056 15174108
    [Google Scholar]
  41. NerínC. CanellasE. VeraP. Migration of packaging and labeling components and advances in analytical methodology supporting exposure assessment.In: Present Knowledge in Food. Safety.United StatesAcademic Press202321823910.1016/B978‑0‑12‑819470‑6.00005‑6
    [Google Scholar]
  42. ManoliE. VoutsaD. Food containers and packaging materials as possible source of hazardous chemicals to food.In: Hazardous Chemicals Associated with Plastics in the Marine Environment.ChamSpringer20191950
    [Google Scholar]
  43. ArvanitoyannisI.S. BosneaL. Migration of substances from food packaging materials to foods.Crit. Rev. Food Sci. Nutr.2004442637610.1080/10408690490424621 15116754
    [Google Scholar]
  44. CastleL. SharmanM. GilbertJ. Gas chromatographic-mass spectrometric determination of epoxidized soybean oil contamination of foods by migration from plastic packaging.J. Assoc. Off. Anal. Chem.19887161183118610.1093/jaoac/71.6.1183 3240977
    [Google Scholar]
  45. PackE.C. LeeK.Y. JungJ.S. JangD.Y. KimH.S. KooY.J. LeeH.G. KimY.S. LimK.M. LeeS.H. ChoiD.W. Determination of the migration of plastic additives and non-intentionally added substances into food simulants and the assessment of health risks from convenience food packaging.Food Packag. Shelf Life20213010073610.1016/j.fpsl.2021.100736
    [Google Scholar]
  46. KatoL.S. Conte-JuniorC.A. Safety of plastic food packaging: The challenges about non-intentionally added substances (NIAS) discovery, identification and risk assessment.Polymers20211313207710.3390/polym13132077 34202594
    [Google Scholar]
  47. AlamriM.S. QasemA.A.A. MohamedA.A. HussainS. IbraheemM.A. ShamlanG. AlqahH.A. QashaA.S. Food packaging’s materials: A food safety perspective.Saudi J. Biol. Sci.20212884490449910.1016/j.sjbs.2021.04.047 34354435
    [Google Scholar]
  48. ArruaR.D. TalebiM. CausonT.J. HilderE.F. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules.Anal. Chim. Acta201273811210.1016/j.aca.2012.05.052 22790694
    [Google Scholar]
  49. ThiruvengadamM RajakumarG ChungIM Nanotechnology: Current uses and future applications in the food industry 3 Biotech 2018 87410.1007/s13205‑018‑1104‑7
    [Google Scholar]
  50. BaerD.R. EngelhardM.H. JohnsonG.E. LaskinJ. LaiJ. MuellerK. MunusamyP. ThevuthasanS. WangH. WashtonN. ElderA. BaischB.L. KarakotiA. KuchibhatlaS.V.N.T. MoonD. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities.J. Vac. Sci. Technol. A201331505082010.1116/1.4818423 24482557
    [Google Scholar]
  51. TiedeK. BoxallA.B.A. TiedeD. TearS.P. DavidH. LewisJ. A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS.J. Anal. At. Spectrom.200924796497210.1039/b822409a
    [Google Scholar]
  52. PitkänenL. StriegelA.M. Size-exclusion chromatography of metal nanoparticles and quantum dots.Trends Analyt. Chem.20168031132010.1016/j.trac.2015.06.013 27335508
    [Google Scholar]
  53. ZhangX.Q. XuX. BertrandN. PridgenE. SwamiA. FarokhzadO.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine.Adv. Drug Deliv. Rev.201264131363138410.1016/j.addr.2012.08.005 22917779
    [Google Scholar]
  54. MudaligeT.K. QuH. Van HauteD. AnsarS.M. LinderS.W. Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: A critical comparative review.Trends Analyt. Chem.201810620221210.1016/j.trac.2018.07.008
    [Google Scholar]
  55. WahlundK.G. Flow field-flow fractionation: Critical overview.J. Chromatogr. A201312879711210.1016/j.chroma.2013.02.028 23510956
    [Google Scholar]
  56. MahmoudiM. LandryM.P. MooreA. CoreasR. The protein corona from nanomedicine to environmental science.Nat. Rev. Mater.20238742243810.1038/s41578‑023‑00552‑2 37361608
    [Google Scholar]
  57. BorowskaM. JankowskiK. Basic and advanced spectrometric methods for complete nanoparticles characterization in bio/eco systems: Current status and future prospects.Anal. Bioanal. Chem.2023415184023403810.1007/s00216‑023‑04641‑7 36949345
    [Google Scholar]
  58. Comtois-MarotteS. ChappuisT. Vo DuyS. GilbertN. LajeunesseA. TaktekS. DesrosiersM. VeilleuxÉ. SauvéS. Analysis of emerging contaminants in water and solid samples using high resolution mass spectrometry with a Q Exactive orbital ion trap and estrogenic activity with YES-assay.Chemosphere201716640041110.1016/j.chemosphere.2016.09.077 27705827
    [Google Scholar]
  59. BotitsiH.V. GarbisS.D. EconomouA. TsipiD.F. Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices.Hoboken, New Jersey, USAWiley Analytical Science Journal2010
    [Google Scholar]
  60. LambropoulouD.A. AlbanisT.A. Methods of sample preparation for determination of pesticide residues in food matrices by chromatography-mass spectrometry-based techniques: A review.Anal. Bioanal. Chem.200738961663168310.1007/s00216‑007‑1348‑2 17541563
    [Google Scholar]
  61. DemuzereM. OrruK. HeidrichO. OlazabalE. GenelettiD. OrruH. BhaveA.G. MittalN. FeliuE. FaehnleM. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure.J. Environ. Manage.201414610711510.1016/j.jenvman.2014.07.025 25163601
    [Google Scholar]
  62. VilakatiB. VenkataramanS. NyoniH. MambaB.B. OmineK. MsagatiT.A.M. Qualitative characterisation and identification of microplastics in a freshwater dam at Gauteng Province, South Africa, using pyrolysis-gas chromatography-time of flight-mass spectrometry (Py-GC-ToF-MS).Environ. Sci. Pollut. Res. Int.20222955834528346810.1007/s11356‑022‑21510‑5 35761140
    [Google Scholar]
  63. Jiménez-SkrzypekG. Ortega-ZamoraC. González-SálamoJ. Hernández-SánchezC. Hernández-BorgesJ. The current role of chromatography in microplastic research: Plastics chemical characterization and sorption of contaminants.J. Chromatogr Open2021110000110.1016/j.jcoa.2021.100001
    [Google Scholar]
  64. RouxC. RobertsonJ. Trace evidence overview.In: Materials Analysis in Forensic Science.Amsterdam, NetherlandsElsevier20161926
    [Google Scholar]
  65. MaurerH.H. Current role of liquid chromatography-mass spectrometry in clinical and forensic toxicology.Anal. Bioanal. Chem.200738871315132510.1007/s00216‑007‑1248‑5 17377775
    [Google Scholar]
  66. HermelinA. FabienL. FischerJ. SaricN. MassonnetG. BurnierC. Analysis of condom evidence in forensic science: Background survey of the human vaginal matrix using DRIFTS and pyrolysis-GC/MS.Forensic Sci. Int.202132111072410.1016/j.forsciint.2021.110724 33611236
    [Google Scholar]
  67. WoodM. LaloupM. SamynN. del Mar Ramirez FernandezM. de BruijnE.A. MaesR.A.A. De BoeckG. Recent applications of liquid chromatography-mass spectrometry in forensic science.J. Chromatogr. A20061130131510.1016/j.chroma.2006.04.084 16716330
    [Google Scholar]
  68. QriouetZ. QmichouZ. BouchoutrouchN. MahiH. CherrahY. SefriouiH. Analytical methods used for the detection and quantification of benzodiazepines.J. Anal. Methods Chem.2019201911110.1155/2019/2035492 31583157
    [Google Scholar]
  69. SalgueiroP.A.S. BorgesC.M.F. Bettencourt da SilvaR.J.N. Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.J. Chromatogr. A2012125718919410.1016/j.chroma.2012.08.015 22920302
    [Google Scholar]
  70. ZhouL. HaydenA. ChandrasekaranA.R. VilcapomaJ. CavaliereC. DeyP. MaoS. ShengJ. DeyB.K. RanganP. HalvorsenK. Sequence-selective purification of biological RNAs using DNA nanoswitches.Cell. Rep Methods20211810012610.1016/j.crmeth.2021.100126 35072148
    [Google Scholar]
  71. ZhuZ. ChenH. RenJ. LuJ.J. GuC. LynchK.B. WuS. WangZ. CaoC. LiuS. Two-dimensional chromatographic analysis using three second-dimension columns for continuous comprehensive analysis of intact proteins.Talanta201817958859310.1016/j.talanta.2017.11.060 29310280
    [Google Scholar]
  72. XuH. TempletonA.C. ZwierzynskiM. MahajanR. ReedR.A. Rapid, simultaneous determination of headspace oxygen and moisture in pharmaceutical packages using μGC.J. Pharm. Biomed. Anal.200538222523110.1016/j.jpba.2004.12.025 15925212
    [Google Scholar]
  73. LiuS. WangC. YangY. DuZ. LiL. ZhangM. NiS. YueZ. YangK. WangY. LiX. YangY. QinY. LiJ. YangY. ZhangM. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS).J. Hazard. Mater.202446913385510.1016/j.jhazmat.2024.133855 38428296
    [Google Scholar]
  74. GarciaM.A. LiuR. NihartA. El HayekE. CastilloE. BarrozoE.R. SuterM.A. BleskeB. ScottJ. ForsytheK. Gonzalez-EstrellaJ. AagaardK.M. CampenM.J. Quantitation and identification of microplastics accumulation in human placental specimens using pyrolysis gas chromatography mass spectrometry.Toxicol. Sci.20241991818810.1093/toxsci/kfae021 38366932
    [Google Scholar]
/content/journals/csch/10.2174/0129504910373441250705161626
Loading
/content/journals/csch/10.2174/0129504910373441250705161626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test