Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2950-4910
  • E-ISSN: 2950-4902

Abstract

This review provides a comprehensive overview of the analytical approaches used for the evaluation of centrally acting skeletal muscle relaxants through the application of High-Performance Liquid Chromatography (HPLC) and associated techniques. This analysis includes the evaluation of drugs in their pure form, in pharmaceutical formulations, and in human plasma or other biological fluids. A literature search was conducted focusing on a specific group of centrally acting skeletal muscle relaxants, such as Carisoprodol, Tizanidine, Chlorzoxazone, Diazepam, Clonazepam, Methocarbamol, and Baclofen. The review summarizes the application of HPLC and Ultra-Fast Liquid Chromatography (UFLC) techniques integrated with UV spectrophotometric detection and mass spectrometric refraction (LC-MS/MS) to facilitate the quantification of the above drugs. Furthermore, the validated process of analytical techniques focuses on parameters such as linearity, range, recovery, Limit of Detection (LOD), and Limit of Quantification (LOQ) to ensure reliability and precision in drug concentration evaluations. This knowledge can be utilised in further research and development, which ultimately leads to improved patient care and treatment outcomes.

Loading

Article metrics loading...

/content/journals/csch/10.2174/0129504910380429250916045209
2025-09-29
2025-12-07
Loading full text...

Full text loading...

References

  1. FudinJ. RaoufM. A review of skeletal muscle relaxants for pain management.Pract. Pain Manag.2016165
    [Google Scholar]
  2. DeFalco, AP Chapter 11 - Neuromuscular blocking agents and skeletal muscle relaxantsIn: Side Effects of Drugs Annual; Ray,SD, Ed.; , 20244617118010.1016/bs.seda.2024.07.010
    [Google Scholar]
  3. MoiniJ. LogalboA. SchnellmannJ.G. Skeletal muscle relaxants.In:Neuropsychopharmacology. MoiniJ. LogalboA. SchnellmannJ.G. Academic Press202321522610.1016/B978‑0‑323‑95974‑2.00017‑7
    [Google Scholar]
  4. KeeganR.D. Muscle relaxants and neuromuscular blockade.In:Veterinary Anesthesia and Analgesia, 1st; Grimm, KA; Lamont,LA; Tranquilli, WJ; Greene, SA; Robertson, SA, Eds.; Wiley,201526027610.1002/9781119421375.ch14
    [Google Scholar]
  5. AsdaqS.M.B. AlamriA.S. AlsanieW.F. AlhomraniM. YasminF. Potential benefits of gallic acid as skeletal muscle relaxant in animal experimental models.Saudi J. Biol. Sci.202128127575758010.1016/j.sjbs.2021.09.060 34867061
    [Google Scholar]
  6. VardanyanR. HrubyV. Centrally acting skeletal muscle relaxants.In:Synthesis of Best-Seller Drugs. VardanyanR. HrubyV. BostonAcademic Press201624324610.1016/B978‑0‑12‑411492‑0.00015‑8
    [Google Scholar]
  7. ChouR. PetersonK. HelfandM. Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: A systematic review.J. Pain Symptom Manage.200428214017510.1016/j.jpainsymman.2004.05.002 15276195
    [Google Scholar]
  8. El-TallawyS.N. NalamasuR. SalemG.I. LeQuangJ.A.K. PergolizziJ.V. ChristoP.J. Management of musculoskeletal pain: An update with emphasis on chronic musculoskeletal pain.Pain Ther.202110118120910.1007/s40122‑021‑00235‑2 33575952
    [Google Scholar]
  9. WilliamsC. Leuwer, M Chapter 12 - Neuromuscular blocking agents and skeletal muscle relaxants In: Side Effects of Drugs Annual;Ray, SD, Ed.; Elsevier, 20143617317710.1016/B978‑0‑444‑63407‑8.00012‑5
    [Google Scholar]
  10. ElenbaasJ.K. Centrally acting oral skeletal muscle relaxants.Am. J. Health Syst. Pharm.198037101313132310.1093/ajhp/37.10.1313 6999895
    [Google Scholar]
  11. WaldmanH.J. WaldmanS.D. KidderK.A. Centrally acting skeletal muscle relaxants and associated drugs.Pain Management.2nd ed WaldmanS.D. PhiladelphiaW.B. Saunders201192492810.1016/B978‑1‑4377‑0721‑2.00125‑2
    [Google Scholar]
  12. McCarthyM.L. BaumC.R. Centrally acting muscle relaxants.Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient. BrentJ. BurkhartK. DarganP. HattenB. MegarbaneB. PalmerR. WhiteJ. ChamSpringer International Publishing20171133114110.1007/978‑3‑319‑17900‑1_72
    [Google Scholar]
  13. JoshiA.A. NerkarP.P. Determination of proton pump inhibitors by spectrophotometric, chromatographic and by hyphenated techniques: A review.Crit. Rev. Anal. Chem.202051612210.1080/10408347.2020.1750339 32312104
    [Google Scholar]
  14. TothP. UrtisJ. Commonly used muscle relaxant therapies for acute low back pain: A review of carisoprodol, cyclobenzaprine hydrochloride, and metaxalone.Clin. Ther.20042691355136710.1016/j.clinthera.2004.09.008 15530999
    [Google Scholar]
  15. ZacnyJ.P. PaiceJ.A. CoalsonD.W. Characterizing the subjective and psychomotor effects of carisoprodol in healthy volunteers.Pharmacol. Biochem. Behav.2011100113814310.1016/j.pbb.2011.08.011 21884720
    [Google Scholar]
  16. MohrhausA.S. GratzS.R. Identification and determination of carisoprodol in tablets by liquid chromatography/mass spectrometry.Microgram J.2004214
    [Google Scholar]
  17. RohithT. AnandaS. GowdaN.M.M. Method development and validation of carisoprodol and its impurities by ultra violet-high performance liquid chromatography. high performance liquid chromatography.Adv. Anal. Chem.2013321519
    [Google Scholar]
  18. DadiM. RambabuC. Stability indicating high performance liquid chromatographic method for the estimation of carisoprodol in bulk and in tablet dosage form.Int. J. Pharm. Tech. Res.20169171180
    [Google Scholar]
  19. ShashikalaP. SireeshaD. VasudhaB. Development and validation of bioanalytical method for the estimation of carisoprodol in human plasma using LC-MS/MS.Asian J. Pharm. Anal.20155418110.5958/2231‑5675.2015.00029.0
    [Google Scholar]
  20. SreenivasuluV. RameshM. KumarI.J. BabuR.V. PilliN.R. KrishnaiahA. Simultaneous determination of carisoprodol and aspirin in human plasma using liquid chromatography-tandem mass spectrometry in polarity switch mode: Application to a human pharmacokinetic study.Biomed. Chromatogr.201327217918510.1002/bmc.2766 22674769
    [Google Scholar]
  21. GhanavatianS. DerianA. Tizanidine.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  22. RaniR. ChaudhariL. DhanoryaD. AhirwarD. KoriS. AhirwarV. RajS. KurmiS. Development of stability indicating rp-hplc method for tizanidine hydrochloride in bulk drug and pharmaceutical dosage form.J. Drug Deliv. Ther.202313313113710.22270/jddt.v13i3.5780
    [Google Scholar]
  23. ZamanM. HanifM. MurtazaH. Development and validation of RP-HPLC method for simultaneous estimation of tizanidine HCl and meloxicam in bilayer mucoadhesive buccal films. Acta.Poloniae Pharma. Drug Res.20187585185910.32383/appdr/80742
    [Google Scholar]
  24. ZamanM. HanifM. KhanN.U.H. MahmoodA. QaisarM.N. AliH. Development and validation of stability-indicating RP-HPLC method for the simultaneous determination of tizanidine HCL and meloxicam in rabbit’s plasma.Acta Chromatogr.201931317317810.1556/1326.2018.00408
    [Google Scholar]
  25. RathorS. SherjeA. Forced degradation studies of tizanidine hydrochloride and development of validated stability-indicating RP-HPLC method.Indian Drugs2021584505510.53879/id.58.04.11226
    [Google Scholar]
  26. LabhadeD. S.; R Chaudhari, S.; B Saudagar, R. Development and validation of RP-HPLC method for simultaneous determination of diclofenac sodium and tizanidine hydrochloride in bulk and tablet formulation.J. Anal. Pharm. Res.20187224424710.15406/japlr.2018.07.00233
    [Google Scholar]
  27. VenkateshD.N. ShanmugakumarS.D. AsfiaNajam, P.P.;] Mahendar, K.; Divya B, E. Narsingam. Bioanalytical method process of chromatographic analysis of tizanidine in the formulation and human plasma.Rasayan J. Chem.202316142242710.31788/RJC.2023.1618127
    [Google Scholar]
  28. PiccoC.J. AnjaniQ.K. DonnellyR.F. LarrañetaE. An isocratic RP-HPLC-UV method for simultaneous quantification of tizanidine and lidocaine: Application to in vitro release studies of a subcutaneous implant.Anal. Methods202416797998910.1039/D3AY01833D 38165785
    [Google Scholar]
  29. BorseS. AhmadS. TatiyaA.U. Method development and validation for the simultaneous estimation of tizanidine and aceclofenac by (UHPLC) RP-HPLC in bulk and tablet dosage forms.J. Pharm. Sci. Res.202113502507
    [Google Scholar]
  30. AbdelrahmanM.M. AbdelwahabN.S. TahaA.A. BoshraJ.M. Determination of chlorzoxazone, diclofenac potassium, and chlorzoxazone toxic degradation product by different chromatographic methods.J. Planar Chromatogr. Mod. TLC201629645346110.1556/1006.2016.29.6.8
    [Google Scholar]
  31. WittL. SuzukiY. HohmannN. MikusG. HaefeliW.E. BurhenneJ. Ultrasensitive quantification of the CYP2E1 probe chlorzoxazone and its main metabolite 6-hydroxychlorzoxazone in human plasma using ultra performance liquid chromatography coupled to tandem mass spectrometry after chlorzoxazone microdosing. J. Chromatogr B Anal. Technol. Biomed.Life Sci.2016102720721310.1016/j.jchromb.2016.05.049 27300008
    [Google Scholar]
  32. AhmedH.M. ElshamyY.S. TalaatW. LabibH.F. BelalT.S. Simultaneous analysis of chlorzoxazone, diclofenac sodium and tramadol hydrochloride in presence of three potential impurities using validated HPLC-DAD and HPTLC methods.Microchem. J.202015310450510.1016/j.microc.2019.104505
    [Google Scholar]
  33. AqelA. AbdulkhairB.Y. ObbedM.S. ALOthman, Z.A.; Badjah-Hadj-Ahmed, Y.; Abdulaziz, M.A. Preparation and characterization of glycidyl polymethacrylate monolith column and its application for simultaneous determination of paracetamol and chlorzoxazone in their combined pharmaceutical formulations.J. Anal. Chem.202075111435144210.1134/S1061934820110106
    [Google Scholar]
  34. SalihM.E. AqelA. AbdulkhairB.Y. AlothmanZ.A. AbdulazizM.A. Badjah-Hadj-AhmedA.Y. Simultaneous determination of paracetamol and chlorzoxazone in their combined pharmaceutical formulations by reversed-phase capillary liquid chromatography using a polymethacrylate monolithic column.J. Chromatogr. Sci.201856981982710.1093/chromsci/bmy058 29920591
    [Google Scholar]
  35. DedhiyaP. PatelN. VyasR. ShahD. ShahS. Determination of 2-amino-4-chlorophenol (related substance) in marketed formulations of Chlorzoxazone by RP-HPLC.J. Pharm. Appl. Sci.2016317
    [Google Scholar]
  36. SakinalaP. VahikaH. SanthoshK. AttintiS. Development and validation of stability indicating assay for simultaneous determination of pentaprazole, diclofenac, chloroxazone in pharmaceutical dosage form by using RP-HPLC.Int. J. Pharm. Sci. Res.20201141757176710.13040/IJPSR.0975‑8232.11(4).1757‑67
    [Google Scholar]
  37. PatelT. PrajapatiA. LuharS. SachinB. NarkhedeS. Development and validation of stability indicating RP-HPLC method for simultaneous estimation of aceclofenac, paracetamol and chlorzoxazone in tablet dosage form.European J. Biomed. Pharm. Sci.201852540553
    [Google Scholar]
  38. KumariK.B. P.; v, Murugan.; v, E.; Sr, Joseph. Simultaneous determination of paracetamol, aceclofenac and chlorzoxazone in pharmaceutical dosage form by UHPLC Method.J. Chromatogr. Sep. Tech.20178510.4172/2157‑7064.1000384
    [Google Scholar]
  39. El-YazbiA.F. GuirguisK.M. BedairM.M. BelalT.S. Validated specific HPLC-DAD method for simultaneous estimation of paracetamol and chlorzoxazone in the presence of five of their degradation products and toxic impurities.Drug Dev. Ind. Pharm.202046111853186110.1080/03639045.2020.1821054 32894703
    [Google Scholar]
  40. HeJ. LiN. XuJ. ZhuJ. YuY. ChenX. LuY. An LC-MS/MS validated method for quantification of chlorzoxazone in human plasma and its application to a bioequivalence study.J. Chromatogr. Sci.201957875175710.1093/chromsci/bmz052 31363741
    [Google Scholar]
  41. PapichM.G. Diazepam.Saunders Handbook of Veterinary Drugs.4th ed PapichM.G. St. LouisW.B. Saunders201622822910.1016/B978‑0‑323‑24485‑5.00201‑1
    [Google Scholar]
  42. BazmiE. BehnoushB. AkhgariM. BahmanabadiL. Quantitative analysis of benzodiazepines in vitreous humor by high-performance liquid chromatography.SAGE Open Med.20164205031211666624310.1177/2050312116666243 27635251
    [Google Scholar]
  43. AlbishriH.M. AldawsariN.A. Abd El-HadyD. A simple and reliable liquid chromatographic method for simultaneous determination of five benzodiazepine drugs in human plasma.Analytica20223225126510.3390/analytica3020018
    [Google Scholar]
  44. SruthiA. TejaswiP. ThanujaN. Sudheer KumarD. Vivek SagarP. Simple RP-HPLC method for estimation of diazepam in tablet dosage form.J. Pharm. Res.20136114014410.1016/j.jopr.2012.11.029
    [Google Scholar]
  45. DuralE. KayaB. Determination of diazepam in human plasma by developed and validated a high-performance liquid chromatographic ultraviolet method. İstanbul.J. Pharm.2022521374610.26650/IstanbulJPharm.2022.877867
    [Google Scholar]
  46. ZendelovskaD. PavlovskaK. AtanasovskaE. GjorgjievskaK. PetrusevskaM. High performance liquid chromatographic method for direct determination of diazepam in whole blood and serum - optimization of solid-phase extraction method.Prilozi (Makedon. Akad. Nauk. Umet. Odd. Med. Nauki)2017383899610.2478/prilozi‑2018‑0009 29668482
    [Google Scholar]
  47. RajuR.R. SrikanthaD. RP-HPLC estimation of imipramine hydrochloride and diazepam in tablets.Indian J. Pharm. Sci.201577334334710.4103/0250‑474X.159672 26180281
    [Google Scholar]
  48. MaheshwariM. SoniP. RP-HPLC method development and validation for rapid estimation of diazepam in bulk and pharmaceutical dosage form.Res. J. Pharm. Technol.2022151938194210.52711/0974‑360X.2022.00322
    [Google Scholar]
  49. GongW. LiuS. XuP. FanM. XueM. Simultaneous quantification of diazepam and dexamethasone in plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic comparison between normoxic and hypoxic rats.Molecules20152046901691210.3390/molecules20046901 25913929
    [Google Scholar]
  50. KimD.H. ChoJ.Y. ChaeS.I. KangB.K. AnT.G. ShimW.S. NohY.S. HwangS.J. ChungE.K. LeeK.T. Development of a simple and sensitive HPLC-MS/MS method for determination of diazepam in human plasma and its application to a bioequivalence study.Transl. Clin. Pharmacol.201725417317810.12793/tcp.2017.25.4.173 32095471
    [Google Scholar]
  51. IbrahimF. El EnanyN. Micellar high performance liquid chromatographic method for simultaneous determination of clonazepam and paroxetine hcl in pharmaceutical preparations using monolithic column.J. Chromatogr. Sep. Tech.20167410.4172/2157‑7064.1000331
    [Google Scholar]
  52. Dokkedal-SilvaV. BerroL.F. GaldurózJ.C.F. TufikS. AndersenM.L. Clonazepam: Indications, side effects, and potential for nonmedical use.Harv. Rev. Psychiatry201927527928910.1097/HRP.0000000000000227 31385811
    [Google Scholar]
  53. Kuten-ShorrerM. TreisterN.S. StockS. KelleyJ.M. JiY.D. WooS.B. LermanM.A. PalmasonS. SonisS.T. VillaA. Safety and tolerability of topical clonazepam solution for management of oral dysesthesia.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2017124214615110.1016/j.oooo.2017.05.470 28606830
    [Google Scholar]
  54. de AraujoF.G. BauerfeldtG.F. MarquesM. MartinsE.M. Development and validation of an analytical method for the detection and quantification of bromazepam, clonazepam and diazepam by uplc-ms/ms in surface water.Bull. Environ. Contam. Toxicol.2019103236236610.1007/s00128‑019‑02631‑z 31104081
    [Google Scholar]
  55. EldinA.B. ShalabyA. AbdallahM.S. ShaldamM.A. AbdallahM.A. Applying green analytical chemistry (GAC) for development of stability indicating HPLC method for determining clonazepam and its related substances in pharmaceutical formulations and calculating uncertainty.Arab. J. Chem.20191271212121810.1016/j.arabjc.2014.10.051
    [Google Scholar]
  56. DominguesD.S. PintoM.A.L. de SouzaI.D. HallakJ.E.C. CrippaJ.A.S. QueirozM.E.C. Determination of drugs in plasma samples by high-performance liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of schizophrenic patients.J. Anal. Toxicol.2015401bkv10710.1093/jat/bkv107 26333987
    [Google Scholar]
  57. MondalP. KolaV. A new stability indicating validated rp-hplc method for simultaneous estimation of escitalopram and clonazepam in bulk and tablet dosage form.Asian J. Pharm. Anal.20199419310.5958/2231‑5675.2019.00032.2
    [Google Scholar]
  58. KhanM.A.A. AhmedS.H. FatimaR. PramodiniD.G.N. Novel RP-HPLC method for the quantification determination of clonazepam and propranolol in bulk form and marketed formulation.Int. J. Adv. Res. Med. Pharm. Sci.2022762133
    [Google Scholar]
  59. GadgeS.S. GameM.D. SalodeV.L. NakodA.D. GadgeM.S. Simultaneous estimation of paroxetine hydrochloride and clonazepam in tablet dosage form by HPLC.Asian J. Res. Chem202013211310.5958/0974‑4150.2020.00023.1
    [Google Scholar]
  60. FoudahA.I. AlshehriS. ShakeelF. AlqarniM.H. AljarbaT.M. AlamP. Simultaneous estimation of escitalopram and clonazepam in tablet dosage forms using hplc-dad method and optimization of chromatographic conditions by box-behnken design.Molecules20222713420910.3390/molecules27134209 35807458
    [Google Scholar]
  61. DinizM.E.R. DiasN.L. PauloB.P. AndradeF.V. MateoE.C. FerreiraA.C.S. Development and validation of method for the determination of the benzodiazepines clonazepam, clobazam and n-desmethylclobazam in serum by lc-ms/ms and its application in clinical routine.Brazilian J. Anal. Chem.2017414816
    [Google Scholar]
  62. FriedmanB.W. CisewskiD. IrizarryE. DavittM. SolorzanoC. NasseryA. PearlmanS. WhiteD. GallagherE.J. A randomized, double-blind, placebo-controlled trial of naproxen with or without orphenadrine or methocarbamol for acute low back pain.Ann. Emerg. Med.201871334835610.1016/j.annemergmed.2017.09.031 29089169
    [Google Scholar]
  63. MohamedS.A.E.A. BelalF.F. A micellar HPLC method for simultaneous determination of methocarbamol in three different tablets using single run; application to human plasma and evaluation of the method greenness.Microchem. J.201914826226910.1016/j.microc.2019.04.079
    [Google Scholar]
  64. ZhengY. PengQ. DongR. ChenT. BaoY. PengQ. YangM. Simultaneous determination of methocarbamol and paracetamol in the presence of three related substances by ultra performance liquid chromatography.Curr. Pharm. Anal.201915550551010.2174/1573412914666180702150357
    [Google Scholar]
  65. El-AdlS.M. El-sadekM.E. HasanM.H. HPLC method for determination of methocarbamol and paracetamol in their pharmaceutical formulation.Anal. Chem. Lett.20166562263010.1080/22297928.2016.1232624
    [Google Scholar]
  66. NatarajK. ReddyS. KumarD.K. ReddyK.K. RP-HPLC method development and validation for the simultaneous estimation of ibuprofen and methocarbamol in ibuprofen-methocarbamol caplets.Res. J. Pharm. Technol20136217818310.5958/0974‑360X
    [Google Scholar]
  67. ElkadyE.F. FouadM.A. MozayadA.N. Application of Box-Behnken experimental design and response surface methodology for selecting the optimum RP-HPLC conditions for the simultaneous determination of methocarbamol, indomethacin and betamethasone in their pharmaceutical dosage form.BMC Chem.202216111410.1186/s13065‑022‑00908‑9 36510282
    [Google Scholar]
  68. KalokheS. NalwadeS. PatilP. RaskarP. Development and validation of a stability-indicating high-performance liquid chromatographic method for the quantification of methocarbamol and its impurities in pharmaceutical dosage forms.J. Chromatogr. Sci.202159655556510.1093/chromsci/bmaa125 33395699
    [Google Scholar]
  69. HingeM. Development and validation of RP-HPLC method for simultaneous determination of methocarbamol and diclofenac sodium in injection dosage form.World J. Pharm. Pharm. Sci.2016518331842
    [Google Scholar]
  70. QiushiP. YajuanZ. RuiD. WenZ. QianrongP. MinY. Simultaneous determination of methocarbamol and ibuprofen in the presence of five related impurities by reversed phase liquid chromatography.Anal. Chem. Lett.20177562363110.1080/22297928.2017.1385419
    [Google Scholar]
  71. RaoV.N. KrishnaG.M. ReddyR.K. BellamR.K. Ultra performance liquid chromatographic separation and quantification of baclofen and its potential impurities in an injection formulation.IOSR J. Pharm. Biol. Sci.2018134293810.9790/3008‑1304022938
    [Google Scholar]
  72. RomitoJ.W. TurnerE.R. RosenerJ.A. ColdironL. UdipiA. NohrnL. TausianiJ. RomitoB.T. Baclofen therapeutics, toxicity, and withdrawal: A narrative review.SAGE Open Med.202192050312121102219710.1177/20503121211022197 34158937
    [Google Scholar]
  73. SowjanyaG. SankarD.G. RP-HPLC method development and validation for the determination of baclofen in injections.World J. Pharm. Res.2017612821835
    [Google Scholar]
  74. HeQ. ChhonkerY.S. McLaughlinM.J. MurryD.J. Simultaneous quantitation of S(+)- and R(−)-baclofen and its metabolite in human plasma and cerebrospinal fluid using LC-APCI-MS/MS: An Application for Clinical Studies.Molecules202025225010.3390/molecules25020250 31936209
    [Google Scholar]
  75. AdhaoV.S. ThengeR. Development and validation of stability indicating high performance liquid chromatography method for determination of baclofen.Am J. Pharm. Tech. Res.201772544556
    [Google Scholar]
  76. DukovaO.A. KrasnovE.A. EfremovA.A. Development of an HPLC method for determining baclofen.Pharm. Chem. J.2015481068768910.1007/s11094‑015‑1172‑5
    [Google Scholar]
  77. Dos SantosJ. RosaP. AdamsA.I.H. Validation of a simple reversed phase-HPLC method for the determination of baclofen in tablets.Drug Anal. Res.201822374310.22456/2527‑2616.87929
    [Google Scholar]
  78. JadejaP. PatelJ.S. ShahD.A. PatelV.B. Development of liquid chromatographic method for estimation of acamprosate calcium and baclofen combination used in treatment of neurological disorders.Indian Drugs2021583545810.53879/id.58.03.11346
    [Google Scholar]
  79. YangK. ZhouY.J. ChenF.H. LongX.M. KuangG.W. SunZ.L. LiuZ.Y. Determination of baclofen residue in muscle, liver, kidney and fat of swine by liquid chromatography-tandem mass spectrometry.Food Anal. Methods201710123866387310.1007/s12161‑017‑0958‑3
    [Google Scholar]
  80. NaharL.K. CorderoR.E. NuttD. Lingford-HughesA. TurtonS. DurantC. WilsonS. PatersonS. Validated Method for the quantification of baclofen in human plasma using solid-phase extraction and liquid chromatography-tandem mass spectrometry.J. Anal. Toxicol.201640211712310.1093/jat/bkv125 26538544
    [Google Scholar]
/content/journals/csch/10.2174/0129504910380429250916045209
Loading
/content/journals/csch/10.2174/0129504910380429250916045209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test