Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2950-4910
  • E-ISSN: 2950-4902

Abstract

Introduction

Software has been used to predict metabolic pathways for possible ‘expected’ and ‘unexpected’ metabolites based on their and fragmentation patterns from low- and high-fragmentation mass spectra of plants subjected to carbamazepine uptake has been used.

Methods

Three plants with high prevalence in the natural protected area of Doñana National Park (Spain) were irrigated with three aqueous carbamazepine solutions (10 ng‧mL-1, 700 ng‧mL,-1 and 10 μg‧mL-1). Periodically, stems, leaves, and roots were sampled and analyzed. Total carbamazepine uptake throughout the assay was evaluated and discussed, demonstrating a clear dependence on plant species/part, irrigation solution concentration, and assay duration. Additionally, chromatographic analysis was performed using a quadrupole time-of-flight (Q-TOF) mass spectrometer, recording simultaneous low and high-fragmentation mass spectra for further computational processing with MetabolynxTM software.

Results

Confirmation was achieved by analyzing the high-energy spectra obtained at the characteristic retention times and fragmentation pattern of each compound.

Discussion

Several potential carbamazepine metabolites corresponding to various metabolic pathways were identified, and, where possible, their relative abundances was discussed.

Conclusion

The use of computational tools like MetabolynxTM has proven to be useful for studies involving the identification of metabolites and/or the confirmation of metabolic pathways in the studied plants.

Loading

Article metrics loading...

/content/journals/csch/10.2174/0129504910365669250728013617
2025-07-31
2025-12-07
Loading full text...

Full text loading...

References

  1. Pintado-HerreraM.G. González-MazoE. Lara-MartínP.A. Environmentally friendly analysis of emerging contaminants by pressurized hot water extraction-stir bar sorptive extraction-derivatization and gas chromatography-mass spectrometry.Anal. Bioanal. Chem.2013405140141110.1007/s00216‑012‑6453‑1 23064672
    [Google Scholar]
  2. Rivera-JaimesJ.A. PostigoC. Melgoza-AlemánR.M. AceñaJ. BarcelóD. López de AldaM. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment.Sci. Total Environ.2018613-6141263127410.1016/j.scitotenv.2017.09.134 28962074
    [Google Scholar]
  3. BessaV.S. MoreiraI.S. MurgoloS. MascoloG. CastroP.M.L. Carbamazepine is degraded by the bacterial strain Labrys portucalensis F11.Sci. Total Environ.201969073974710.1016/j.scitotenv.2019.06.461 31301512
    [Google Scholar]
  4. PazA. TadmorG. MalchiT. Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: Sorption, leaching and plant uptake.Chemosphere2016160222910.1016/j.chemosphere.2016.06.048 27351902
    [Google Scholar]
  5. HurtadoC. DomínguezC. Pérez-BabaceL. CañamerasN. ComasJ. BayonaJ.M. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.J. Hazard. Mater.201630513914810.1016/j.jhazmat.2015.11.039 26651071
    [Google Scholar]
  6. PicóY. Alvarez-RuizR. AlfarhanA.H. El-SheikhM.A. AlobaidS.M. BarcelóD. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia).Sci. Total Environ.201965256257210.1016/j.scitotenv.2018.10.224 30368185
    [Google Scholar]
  7. Bartelt-HuntS.L. SnowD.D. DamonT. ShockleyJ. HoaglandK. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska.Environ. Pollut.2009157378679110.1016/j.envpol.2008.11.025 19110357
    [Google Scholar]
  8. BahlmannA. BrackW. SchneiderR.J. KraussM. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal.Water Res.20145710411410.1016/j.watres.2014.03.022 24704908
    [Google Scholar]
  9. RodriguesF DurãesL SimõesNEC PereiraAMPT SilvaLJG João FeioM Pharmaceuticals in urban streams: A review of their detection and effects in the ecosystem. Water Res2025268(Pt B)12265710.1016/j.watres.2024.122657 39489128
    [Google Scholar]
  10. Di BaccioD. PietriniF. BertolottoP. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants.Sci. Total Environ.2017584-58536337310.1016/j.scitotenv.2016.12.191 28104333
    [Google Scholar]
  11. PietriniF. Di BaccioD. AceñaJ. PérezS. BarcelóD. ZacchiniM. Ibuprofen exposure in Lemna gibba L.: Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium.J. Hazard. Mater.201530018919310.1016/j.jhazmat.2015.06.068 26184801
    [Google Scholar]
  12. CollinsC. FryerM. GrossoA. Plant uptake of non ionic organic chemicals.Environ. Sci. Technol.2006401455210.1021/es0508166 16433331
    [Google Scholar]
  13. BarthaB. HuberC. SchröderP. Uptake and metabolism of diclofenac in Typha latifolia - How plants cope with human pharmaceutical pollution.Plant Sci.2014227122010.1016/j.plantsci.2014.06.001 25219301
    [Google Scholar]
  14. AlberoB. TadeoJ.L. PérezR.A. Determination of emerging contaminants in cereals by gas chromatography-tandem mass spectrometry.Front Chem.2020857166810.3389/fchem.2020.571668 33195058
    [Google Scholar]
  15. RhodesG. ChuangY.H. HammerschmidtR. ZhangW. BoydS.A. LiH. Uptake of cephalexin by lettuce, celery, and radish from water.Chemosphere202126312791610.1016/j.chemosphere.2020.127916 33297013
    [Google Scholar]
  16. BigottY. ChowdhuryS.P. PérezS. MontemurroN. ManasfiR. SchröderP. Effect of the pharmaceuticals diclofenac and lamotrigine on stress responses and stress gene expression in lettuce (Lactuca sativa) at environmentally relevant concentrations.J. Hazard. Mater.202140312388110.1016/j.jhazmat.2020.123881 33264951
    [Google Scholar]
  17. DanieleG. FieuM. JoachimS. Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry.Environ. Sci. Pollut. Res. Int.20172420168931690410.1007/s11356‑017‑9297‑6 28573566
    [Google Scholar]
  18. VerlicchiP. Al AukidyM. ZambelloE. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review.Sci. Total Environ.201242912315510.1016/j.scitotenv.2012.04.028 22583809
    [Google Scholar]
  19. ChenH. GuX. ZengQ. MaoZ. LiangX. MartyniukC.J. Carbamazepine disrupts molting hormone signaling and inhibits molting and growth of Eriocheir sinensis at environmentally relevant concentrations.Aquat. Toxicol.201920813814510.1016/j.aquatox.2019.01.010 30669117
    [Google Scholar]
  20. ClaraM. StrennB. KreuzingerN. Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration.Water Res.200438494795410.1016/j.watres.2003.10.058 14769414
    [Google Scholar]
  21. WilkinsonJ.L. Pharmaceutical pollution of the world’s rivers.Proc. Natl. Acad. Sci. USA20221198e211394711910.1073/pnas.2113947119
    [Google Scholar]
  22. RojoM Álvarez-MuñozD DománicoA Human pharmaceuticals in three major fish species from the Uruguay River (SouthAmerica) with different feeding habitsEnviron Pollut2019252Pt A14615410.1016/j.envpol.2019.05.099 31146229
    [Google Scholar]
  23. GoldsteinM. ShenkerM. ChefetzB. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables.Environ. Sci. Technol.201448105593560010.1021/es5008615 24749778
    [Google Scholar]
  24. MalchiT. MaorY. TadmorG. ShenkerM. ChefetzB. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks.Environ. Sci. Technol.201448169325933310.1021/es5017894 25026038
    [Google Scholar]
  25. RiemenschneiderC. Al-RaggadM. MoederM. SeiwertB. SalamehE. ReemtsmaT. Pharmaceuticals, their metabolites, and other polar pollutants in field-grown vegetables irrigated with treated municipal wastewater.J. Agric. Food Chem.201664295784579210.1021/acs.jafc.6b01696 27378214
    [Google Scholar]
  26. ShiQ. CaoM. XiongY. Alternating water sources to minimize contaminant accumulation in food plants from treated wastewater irrigation.Water Res.202425512150410.1016/j.watres.2024.121504 38555786
    [Google Scholar]
  27. MofokengN.N. MadikizelaL.M. TiggelmanI. ChimukaL. Emerging contaminants as unintentional substances in paper and board: A case of unexpected pharmaceuticals detection in the paper recycling chain.J. Hazard. Mater.202447213441910.1016/j.jhazmat.2024.134419 38691993
    [Google Scholar]
  28. JonesB.M. CollinsC.D. Measuring and modelling the plant uptake and accumulation of synthetic organic chemicals: With a focus on pesticides and root uptake.In:Bioavailability of Organic Chemicals in Soil and Sediment Ortega-CalvoJ.J. ParsonsJ.R. ChamSpringer2020Vol. 10013114710.1007/698_2020_591
    [Google Scholar]
  29. TrappS. Plant uptake and transport models for neutral and ionic chemicals.Environ. Sci. Pollut. Res. Int.2004111333910.1065/espr2003.08.169 15005138
    [Google Scholar]
  30. BriggsG.G. BromilowR.H. EvansA.A. Relationships between lipophilicity and root uptake and translocation of non‐ionised chemicals by barley.Pestic. Sci.198213549550410.1002/ps.2780130506
    [Google Scholar]
  31. BriggsG.G. RigitanoR.L.O. BromilowR.H. Physico‐chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley.Pestic. Sci.198719210111210.1002/ps.2780190203
    [Google Scholar]
  32. TrappS. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds.Pest Manag. Sci.200056976777810.1002/1526‑4998(200009)56:9<767:AID‑PS198>3.0.CO;2‑Q
    [Google Scholar]
  33. ShenkerM. HarushD. Ben-AriJ. ChefetzB. Uptake of carbamazepine by cucumber plants - A case study related to irrigation with reclaimed wastewater.Chemosphere201182690591010.1016/j.chemosphere.2010.10.052 21071061
    [Google Scholar]
  34. WuX. ConkleJ.L. GanJ. Multi-residue determination of pharmaceutical and personal care products in vegetables.J. Chromatogr. A20121254788610.1016/j.chroma.2012.07.041 22867843
    [Google Scholar]
  35. WuX. ErnstF. ConkleJ.L. GanJ. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables.Environ. Int.201360152210.1016/j.envint.2013.07.015 23973619
    [Google Scholar]
  36. MezzelaniM. PeruzzaL. d’ErricoG. MilanM. GorbiS. RegoliF. Mixtures of environmental pharmaceuticals in marine organisms: Mechanistic evidence of carbamazepine and valsartan effects on Mytilus galloprovincialis.Sci. Total Environ.202386016046510.1016/j.scitotenv.2022.160465 36427727
    [Google Scholar]
  37. RodriguesP. GuimarãesL. CarvalhoA.P. Oliva-TelesL. Carbamazepine, venlafaxine, tramadol, and their main metabolites: Toxicological effects on zebrafish embryos and larvae.J. Hazard. Mater.202344813090910.1016/j.jhazmat.2023.130909 36860067
    [Google Scholar]
  38. AdedaraI.A. AjayiB.O. AfolabiB.A. AwogbindinI.O. RochaJ.B.T. FarombiE.O. Toxicological outcome of exposure to psychoactive drugs carbamazepine and diazepam on non-target insect Nauphoeta cinerea.Chemosphere2021264Pt 112844910.1016/j.chemosphere.2020.128449 33032224
    [Google Scholar]
  39. LiM. ChengY. DingT. Phytotransformation and Metabolic Pathways of 14C-Carbamazepine in carrot and celery.J. Agric. Food Chem.202068113362337110.1021/acs.jafc.9b05693 32105463
    [Google Scholar]
  40. LiM. DingT. WangH. WangW. YeQ. LiJ. Biosolids inhibit uptake and translocation of 14C-carbamazepine by edible vegetables in soil.Environ. Sci. Pollut. Res. Int.20202788323833310.1007/s11356‑019‑07429‑4 31897987
    [Google Scholar]
  41. GrossbergerA. HadarY. BorchT. ChefetzB. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater.Environ. Pollut.201418516817710.1016/j.envpol.2013.10.038 24286691
    [Google Scholar]
  42. RiemenschneiderC. SeiwertB. MoederM. SchwarzD. ReemtsmaT. Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants.Environ. Sci. Technol.201751116100610910.1021/acs.est.6b06485 28506063
    [Google Scholar]
  43. MejíasC. ArenasM. MartínJ. SantosJ.L. AparicioI. AlonsoE. Multiclass analysis for the determination of pharmaceuticals and their main metabolites in leafy and root vegetables.Molecules20242915347110.3390/molecules29153471 39124876
    [Google Scholar]
  44. KodešováR. ŠvecováH. KlementA. Contamination of water, soil, and plants by micropollutants from reclaimed wastewater and sludge from a wastewater treatment plant.Sci. Total Environ.202490716796510.1016/j.scitotenv.2023.167965 37866592
    [Google Scholar]
  45. GoldsteinM. MalchiT. ShenkerM. ChefetzB. Pharmacokinetics in Plants: Carbamazepine and its interactions with lamotrigine.Environ. Sci. Technol.201852126957696410.1021/acs.est.8b01682 29787250
    [Google Scholar]
  46. MishraB. ChandraM. Evaluation of phytoremediation potential of aromatic plants: A systematic review.J. Appl. Res. Med. Aromat. Plants20223110040510.1016/j.jarmap.2022.100405
    [Google Scholar]
  47. MilićD. BubanjaN. NinkovJ. MilićS. VasinJ. LukovićJ. Phytoremediation potential of the naturally occurring wetland species in protected long beach in Ulcinj, Montenegro.Sci. Total Environ.202179714899510.1016/j.scitotenv.2021.148995 34303239
    [Google Scholar]
  48. SantosM. PedroC. GonçalvesS. FerreiraS. Salinity influence on cadmium phytoremediation capacity of the halophyte plants Salicornia ramosissima and Scirpus maritimus from coastal environments (Portugal).Curr. Opin. Biotechnol.2013241S8010.1016/j.copbio.2013.05.228
    [Google Scholar]
  49. Barreales-SuárezS. Callejón-MochónM. AzoulayS. Bello-LópezM.Á. Fernández-TorresR. Liquid chromatography quadrupole time-of-flight mass spectrometry determination of six pharmaceuticals in vegetal biota. Uptake study in Lavandula dentata.Sci. Total Environ.2018622-62365566310.1016/j.scitotenv.2017.11.244 29223892
    [Google Scholar]
  50. Barreales-SuárezS. AzoulayS. Bello-LópezM.Á. Fernández-TorresR. Uptake study in Juncus sp. and Salicornia europaea of six pharmaceuticals by liquid chromatography quadrupole time-of-flight mass spectrometry.Chemosphere202126612899510.1016/j.chemosphere.2020.128995 33288285
    [Google Scholar]
  51. TrognonJ. AlbasiC. ChoubertJ.M. A critical review on the pathways of carbamazepine transformation products in oxidative wastewater treatment processes.Sci. Total Environ.202491216904010.1016/j.scitotenv.2023.169040 38061647
    [Google Scholar]
  52. WuX. DodgenL.K. ConkleJ.L. GanJ. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review.Sci. Total Environ.201553665566610.1016/j.scitotenv.2015.07.129 26254067
    [Google Scholar]
  53. DodgenL.K. UedaA. WuX. ParkerD.R. GanJ. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs.Environ. Pollut.201519819814415310.1016/j.envpol.2015.01.002 25594843
    [Google Scholar]
  54. KumarK. GuptaS.C. A framework to predict uptake of trace organic compounds by plants.J. Environ. Qual.201645255556410.2134/jeq2015.06.0261 27065403
    [Google Scholar]
  55. LimmerM.A. BurkenJ.G. Plant translocation of organic compounds: Molecular and physicochemical predictors.Environ. Sci. Technol. Lett.20141215616110.1021/ez400214q
    [Google Scholar]
  56. HarveyP.J. CampanellaB.F. CastroP.M.L. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.Environ. Sci. Pollut. Res. Int.200291294710.1007/BF02987315 11885416
    [Google Scholar]
  57. MorantM. BakS. MøllerB.L. Werck-ReichhartD. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation.Curr. Opin. Biotechnol.200314215116210.1016/S0958‑1669(03)00024‑7 12732316
    [Google Scholar]
  58. Golan-RozenN. ChefetzB. Ben-AriJ. GevaJ. HadarY. Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase.Environ. Sci. Technol.201145166800680510.1021/es200298t 21744850
    [Google Scholar]
  59. Golan-RozenN. SeiwertB. RiemenschneiderC. ReemtsmaT. ChefetzB. HadarY. Transformation pathways of the recalcitrant pharmaceutical compound carbamazepine by the white-rot fungus Pleurotus ostreatus: Effects of Growth Conditions.Environ. Sci. Technol.20154920123511236210.1021/acs.est.5b02222 26418858
    [Google Scholar]
  60. ZhuL. Santiago-SchübelB. XiaoH. An efficient laboratory workflow for environmental risk assessment of organic chemicals.Chemosphere2015131344010.1016/j.chemosphere.2015.02.031 25765261
    [Google Scholar]
  61. AceñaJ. PérezS. EichhornP. SoléM. BarcelóD. Metabolite profiling of carbamazepine and ibuprofen in Solea senegalensis bile using high-resolution mass spectrometry.Anal. Bioanal. Chem.2017409235441545010.1007/s00216‑017‑0467‑7 28664339
    [Google Scholar]
  62. DingT. LinK. YangB. YangM. LiJ. Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as influenced by humic acid and nitrogen species.J. Hazard. Mater.201937812076310.1016/j.jhazmat.2019.120763 31207484
    [Google Scholar]
  63. JelicA. MichaelI. AchilleosA. Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment.J. Hazard. Mater.2013263Pt 117718610.1016/j.jhazmat.2013.07.068 23972790
    [Google Scholar]
  64. Martínez-PiernasA.B. Nahim-GranadosS. Polo-LópezM.I. Identification of transformation products of carbamazepine in lettuce crops irrigated with ultraviolet-C treated water.Environ. Pollut.20192471009101910.1016/j.envpol.2019.02.001 30823329
    [Google Scholar]
  65. MiaoX.S. MetcalfeC.D. Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography-electrospray tandem mass spectrometry.Anal. Chem.200375153731373810.1021/ac030082k 14572037
    [Google Scholar]
  66. SauvêtreA. MayR. HarpaintnerR. PoschenriederC. SchröderP. Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis.J. Hazard. Mater.2018342859510.1016/j.jhazmat.2017.08.006 28823920
    [Google Scholar]
  67. De MastroF. TraversaA. CocozzaC. Fate of carbamazepine and its metabolites in a soil-aromatic plant system.Soil Syst.2024838310.3390/soilsystems8030083
    [Google Scholar]
  68. JiangW. XiaT. YunY. UHPLC-MS/MS method for simultaneous determination of carbamazepine and its seven major metabolites in serum of epileptic patients.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20191108172410.1016/j.jchromb.2018.12.016 30660838
    [Google Scholar]
  69. AhmedM.M. ChironS. Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater.Water Res.20144822923610.1016/j.watres.2013.09.033 24095595
    [Google Scholar]
  70. HübnerU. SeiwertB. ReemtsmaT. JekelM. Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment - Indications from column experiments.Water Res.201449344310.1016/j.watres.2013.11.016 24316180
    [Google Scholar]
  71. LiuN. LeiZ.D. WangT. Radiolysis of carbamazepine aqueous solution using electron beam irradiation combining with hydrogen peroxide: Efficiency and mechanism.Chem. Eng. J.201629548449310.1016/j.cej.2016.03.040
    [Google Scholar]
  72. BrezinaE. PrasseC. MeyerJ. MückterH. TernesT.A. Investigation and risk evaluation of the occurrence of carbamazepine, oxcarbazepine, their human metabolites and transformation products in the urban water cycle.Environ. Pollut.201722526126910.1016/j.envpol.2016.10.106 28408188
    [Google Scholar]
  73. LiJ. DodgenL. YeQ. GanJ. Degradation kinetics and metabolites of carbamazepine in soil.Environ. Sci. Technol.20134783678368410.1021/es304944c 23506704
    [Google Scholar]
/content/journals/csch/10.2174/0129504910365669250728013617
Loading
/content/journals/csch/10.2174/0129504910365669250728013617
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test