Skip to content
2000
image of The Role of Synovitis and Latent Transcription Factors in the Pathogenesis of Rheumatoid Arthritis

Abstract

Background

Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disease that affects synovial membranes, leading to relentless progressive joint damage. This pathological process is regulated by transcription factors, such as NF-κB, STAT3, TGF-β, WNT, p38 MAPK, mTOR, AP-1, TLR-4, SOCS-4, YY-1, IRF, and FGF-20, which enhance the production of matrix-degrading enzymes and proinflammatory cytokines. Dysregulation of these transcription factors amplifies inflammation and accelerates joint damage, making them potential therapeutic targets.

Objectives

The purpose of this review was to summarize the role of transcription factors in RA and the onset of synovitis and identify potential therapeutic targets to mitigate joint damage.

Methodology

A comprehensive search of electronic databases (PubMed, Google Scholar, and Web of Science) was conducted. Additionally, searches of government health ministries and websites were performed to retrieve relevant information. Records available until March 12, 2024, were considered. Screening (primary and secondary) of the records and data extraction from eligible studies were carried out.

Results

Synovitis sustains a proinflammatory environment mediated by dysregulated transcription factors, as mentioned earlier. These transcription factors promote the production of inflammatory cytokines and matrix-degrading enzymes, leading to progressive joint destruction. Therefore, targeting these transcription factors or their upstream regulators may offer promising therapeutic interventions for RA.

Conclusion

The pathogenesis of RA centers on transcription factors responsible for the inflammatory and destructive processes in synovitis. These molecules are ideal targets for developing novel treatments. Further elucidation of their complex molecular interactions and advancements in personalized therapies for RA patients is necessary.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971346656250403051144
2025-04-15
2025-12-06
Loading full text...

Full text loading...

References

  1. Firestein G.S. Evolving concepts of rheumatoid arthritis. Nature 2003 423 6937 356 361 10.1038/nature01661 12748655
    [Google Scholar]
  2. Pal R. Chaudhary M.J. Tiwari P.C. Nath R. Pant K.K. Pharmacological and biochemical studies on protective effects of mangiferin and its interaction with nitric oxide (NO) modulators in adjuvant-induced changes in arthritic parameters, inflammatory, and oxidative biomarkers in rats. Inflammopharmacology 2018 8 0507 10.1007/s10787‑018‑0507‑8 29934863
    [Google Scholar]
  3. Pal R. Chaudhary M.J. Tiwari P.C. Babu S. Pant K.K. Protective role of theophylline and their interaction with nitric oxide (NO) in adjuvant-induced rheumatoid arthritis in rats. Int. Immunopharmacol. 2015 29 2 854 862 10.1016/j.intimp.2015.08.031 26349791
    [Google Scholar]
  4. Pal R. Chaudhary M.J. Tiwari P.C. Nath R. Babu S. Pant K.K. Pharmacological studies on the anti-inflammatory and immunomodulatory role of pentoxifylline and its interaction with nitric oxide (NO) in experimental arthritis in rats. Inflammopharmacology 2016 24 5 221 231 10.1007/s10787‑016‑0281‑4 27671331
    [Google Scholar]
  5. Smolen J.S. Landewé R.B.M. van der Heijde D. Response to: '2016 update of the EULAR recommendations for the management of rheumatoid arthritis: No utopia for patients in low/middle-income countries?' by Misra et al. Ann. Rheum. Dis. 2017 76 11 e48 10.1136/annrheumdis‑2017‑211455 28478402
    [Google Scholar]
  6. Bottini N. Firestein G.S. Epigenetics in rheumatoid arthritis: A primer for rheumatologists. Curr. Rheumatol. Rep. 2013 15 11 372 10.1007/s11926‑013‑0372‑9 24072602
    [Google Scholar]
  7. McInnes I.B. Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007 7 6 429 442 10.1038/nri2094 17525752
    [Google Scholar]
  8. Bonelli M. Dalwigk K. Platzer A. Olmos Calvo I. Hayer S. Niederreiter B. Holinka J. Sevelda F. Pap T. Steiner G. Superti-Furga G. Smolen J.S. Kiener H.P. Karonitsch T. IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes. Exp. Mol. Med. 2019 51 7 1 11 10.1038/s12276‑019‑0267‑6 31285419
    [Google Scholar]
  9. Dennis G. Jr Holweg C.T.J. Kummerfeld S.K. Choy D.F. Setiadi A.F. Hackney J.A. Haverty P.M. Gilbert H. Lin W.Y. Diehl L. Fischer S. Song A. Musselman D. Klearman M. Gabay C. Kavanaugh A. Endres J. Fox D.A. Martin F. Townsend M.J. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 2014 16 2 R90 10.1186/ar4555 25167216
    [Google Scholar]
  10. Scott D.L. Wolfe F. Huizinga T.W.J. Rheumatoid arthritis. Lancet 2010 376 9746 1094 1108 10.1016/S0140‑6736(10)60826‑4 20870100
    [Google Scholar]
  11. Bartok B. Firestein G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev. 2010 233 1 233 255 10.1111/j.0105‑2896.2009.00859.x 20193003
    [Google Scholar]
  12. Szekanecz Z. Szekanecz É. Bakó G. Shoenfeld Y. Malignancies in autoimmune rheumatic diseases - a mini-review. Gerontology 2011 57 1 3 10 10.1159/000314634 20453490
    [Google Scholar]
  13. Manzo A. Bombardieri M. Humby F. Pitzalis C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: From inflammation to autoimmunity and tissue damage/remodeling. Immunol. Rev. 2010 233 1 267 285 10.1111/j.0105‑2896.2009.00861.x 20193005
    [Google Scholar]
  14. Firestein G.S. McInnes I.B. Immunopathogenesis of rheumatoid arthritis. Immunity 2017 46 2 183 196 10.1016/j.immuni.2017.02.006 28228278
    [Google Scholar]
  15. Aloisi F. Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 2006 6 3 205 217 10.1038/nri1786 16498451
    [Google Scholar]
  16. Takemura S. Braun A. Crowson C. Kurtin P.J. Cofield R.H. O’Fallon W.M. Goronzy J.J. Weyand C.M. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 2001 167 2 1072 1080 10.4049/jimmunol.167.2.1072 11441118
    [Google Scholar]
  17. Cheon H. Yu S.J. Yoo D.H. Chae I.J. Song G.G. Sohn J. Increased expression of pro-inflammatory cytokines and metalloproteinase-1 by TGF- β 1 in synovial fibroblasts from rheumatoid arthritis and normal individuals. Clin. Exp. Immunol. 2002 127 3 547 552 10.1046/j.1365‑2249.2002.01785.x 11966774
    [Google Scholar]
  18. O’Shea J.J. Paul W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010 327 5969 1098 1102 10.1126/science.1178334 20185720
    [Google Scholar]
  19. Ghosh S. May M.J. Kopp E.B. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998 16 1 225 260 10.1146/annurev.immunol.16.1.225 9597130
    [Google Scholar]
  20. Takeda K. Clausen B.E. Kaisho T. Tsujimura T. Terada N. Förster I. Akira S. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999 10 1 39 49 10.1016/S1074‑7613(00)80005‑9 10023769
    [Google Scholar]
  21. Hernández D.A.Z. Chagollán M.G. Zuno G.A.S. Arellano S.G. Bello J.H. Palma L.A.H. Expression of transcriptional factors of T helper differentiation (T-bet, GATA-3, RORγt, and FOXP3), MIF receptors (CD44, CD74, CXCR2, 4, 7), and Th1, Th2, and Th17 cytokines in PBMC from control subjects and rheumatoid arthritis patients. Curr. Mol. Med. 2023 24 9 1169 1182 10.2174/0115665240260976230925095330 37807647
    [Google Scholar]
  22. Zhou L.F. Zeng W. Sun L.C. Wang Y. Jiang F. Li X. Zheng Y. Wu G.M. IKKε aggravates inflammatory response via activation of NF-κB in rheumatoid arthritis. Eur. Rev. Med. Pharmacol. Sci. 2018 22 7 2126 2133 29687872
    [Google Scholar]
  23. Roman-Blas J.A. Jimenez S.A. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2006 14 9 839 848 10.1016/j.joca.2006.04.008 16730463
    [Google Scholar]
  24. Pal R. Tiwari P.C. Nath R. Babu S. Pant K.K. Phosphodiesterase (PDE) inhibitors and their interaction with nitric oxide (NO) modulators in adjuvant-induced rheumatoid arthritis. FASEB J. 2016 30 S1 lb556 10.1096/fasebj.30.1_supplement.lb556
    [Google Scholar]
  25. Pal R. Tiwari P.C. Nath R. Pant K.K. Role of cAMP/cGMP-PDE inhibitors and their interactions with L-arginine & L-NAME in adjuvant induced rheumatoid arthritis in rats. Proceedings for Annual Meeting of The Japanese Pharmacological Society Kyoto, 01-06, July 2018, pp. 5-27. 10.1254/jpssuppl.WCP2018.0_PO2‑5‑27
    [Google Scholar]
  26. Pal R. Chaudhary M.J. Tiwari P.C. Nath R. Pant K.K. Pharmacological and biochemical studies on protective effects of mangiferin and its interaction with nitric oxide (NO) modulators in adjuvant-induced changes in arthritic parameters, inflammatory, and oxidative biomarkers in rats. Inflammopharmacology 2019 27 2 291 299 10.1007/s10787‑018‑0507‑8 29934863
    [Google Scholar]
  27. Chen Z. Lin F. Gao Y. Li Z. Zhang J. Xing Y. Deng Z. Yao Z. Tsun A. Li B. FOXP3 and RORγt: Transcriptional regulation of Treg and Th17. Int. Immunopharmacol. 2011 11 5 536 542 10.1016/j.intimp.2010.11.008 21081189
    [Google Scholar]
  28. Kondo N. Kuroda T. Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 2021 22 20 10922 10.3390/ijms222010922 34681582
    [Google Scholar]
  29. Zhang J. Liu H. Chen Y. Liu H. Zhang S. Yin G. Xie Q. Augmenting regulatory T cells: New therapeutic strategy for rheumatoid arthritis. Front. Immunol. 2024 15 1312919 10.3389/fimmu.2024.1312919 38322264
    [Google Scholar]
  30. Luo P. Wang P. Xu J. Hou W. Xu P. Xu K. Liu L. Immunomodulatory role of T helper cells in rheumatoid arthritis. Bone Joint Res. 2022 11 7 426 438 10.1302/2046‑3758.117.BJR‑2021‑0594.R1 35775145
    [Google Scholar]
  31. Ilchovska D.D. Barrow D.M. An overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions. Autoimmun. Rev. 2021 20 2 102741 10.1016/j.autrev.2020.102741 33340772
    [Google Scholar]
  32. Handel M.L. Mcmorrow L.B. Gravallese E.M. Nuclear factor– k B in rheumatoid synovium. Localization of P50 and P65. Arthritis Rheum. 1995 38 12 1762 1770 10.1002/art.1780381209 8849348
    [Google Scholar]
  33. Serasanambati M. Chilakapati S.R. Function of nuclear factor kappa B (NF-kB) in human diseases-a review. Sou. Ind. J. Biolog. Sci. 2016 2 4 368 387 10.22205/sijbs/2016/v2/i4/103443
    [Google Scholar]
  34. Uchida T. Akasaki Y. Sueishi T. Kurakazu I. Toya M. Kuwahara M. Hirose R. Hyodo Y. Tsushima H. Lotz M.K. Nakashima Y. Promotion of knee cartilage degradation by IκB kinase ε in the pathogenesis of osteoarthritis in human and murine models. Arthr. Rheumatol. 2023 75 6 937 949 10.1002/art.42421 36530063
    [Google Scholar]
  35. Akhter S. Irfan H.M. Alamgeer Jahan S. Shahzad M. Latif M.B. Nerolidol: A potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model. Inflammopharmacology 2022 30 2 537 548 10.1007/s10787‑022‑00930‑2 35212850
    [Google Scholar]
  36. Hayden M.S. Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008 132 3 344 362 10.1016/j.cell.2008.01.020 18267068
    [Google Scholar]
  37. Karin M. Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu. Rev. Immunol. 2000 18 1 621 663 10.1146/annurev.immunol.18.1.621 10837071
    [Google Scholar]
  38. Liu T. Zhang L. Joo D. Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 1 17023 10.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  39. Davenport A.P. Scully C.C.G. de Graaf C. Brown A.J.H. Maguire J.J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug. Discov. 2020 19 6 389 413 10.1038/s41573‑020‑0062‑z 32494050
    [Google Scholar]
  40. Isomäki P. Junttila I. Vidqvist K.L. Korpela M. Silvennoinen O. The activity of JAK-STAT pathways in rheumatoid arthritis: Constitutive activation of STAT3 correlates with interleukin 6 levels. Rheumatology (Oxford) 2015 54 6 1103 1113 10.1093/rheumatology/keu430 25406356
    [Google Scholar]
  41. Walker J.G. Smith M.D. The Jak-STAT pathway in rheumatoid arthritis. J. Rheumatol. 2005 32 9 1650 1653 16142855
    [Google Scholar]
  42. Krause A. Scaletta N. Ji J.D. Ivashkiv L.B. Rheumatoid arthritis synoviocyte survival is dependent on Stat3. J. Immunol. 2002 169 11 6610 6616 10.4049/jimmunol.169.11.6610 12444174
    [Google Scholar]
  43. Garbers C. Aparicio-Siegmund S. Rose-John S. The IL-6/gp130/STAT3 signaling axis: Recent advances towards specific inhibition. Curr. Opin. Immunol. 2015 34 75 82 10.1016/j.coi.2015.02.008 25749511
    [Google Scholar]
  44. Mori T. Miyamoto T. Yoshida H. Asakawa M. Kawasumi M. Kobayashi T. Morioka H. Chiba K. Toyama Y. Yoshimura A. IL-1 and TNF -initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int. Immunol. 2011 23 11 701 712 10.1093/intimm/dxr077 21937456
    [Google Scholar]
  45. Oike T. Sato Y. Kobayashi T. Miyamoto K. Nakamura S. Kaneko Y. Stat3 as a potential therapeutic target for rheumatoid arthritis. Sci. Rep. 2017 7 1 10965 10.1038/s41598‑017‑11233‑w
    [Google Scholar]
  46. O’Shea J.J. Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012 36 4 542 550 10.1016/j.immuni.2012.03.014 22520847
    [Google Scholar]
  47. Darnell J.E. Jr STATs and gene regulation. Science 1997 277 5332 1630 1635 10.1126/science.277.5332.1630 9287210
    [Google Scholar]
  48. Gonzalo-Gil E. Galindo-Izquierdo M. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis. Reumatol. Clin. 2014 10 3 174 179 10.1016/j.reuma.2014.01.009 24685296
    [Google Scholar]
  49. Szekanecz Z. Haines G.K. Harlow L.A. Shah M.R. Fong T.W. Fu R. Lin S.J.W. Rayan G. Koch A.E. Increased synovial expression of transforming growth factor (TGF)-β receptor endoglin and TGF-β 1 in rheumatoid arthritis: Possible interactions in the pathogenesis of the disease. Clin. Immunol. Immunopathol. 1995 76 2 187 194 10.1006/clin.1995.1114 7614737
    [Google Scholar]
  50. Peres R.S. Donate P.B. Talbot J. Cecilio N.T. Lobo P.R. Machado C.C. Lima K.W.A. Oliveira R.D. Carregaro V. Nakaya H.I. Cunha T.M. Alves-Filho J.C. Liew F.Y. Louzada-Junior P. Cunha F.Q. TGF-β signalling defect is linked to low CD39 expression on regulatory T cells and methotrexate resistance in rheumatoid arthritis. J. Autoimmun. 2018 90 49 58 10.1016/j.jaut.2018.01.004 29426578
    [Google Scholar]
  51. Lories R.J. Corr M. Lane N.E. To Wnt or not to Wnt: The bone and joint health dilemma. Nat. Rev. Rheumatol. 2013 9 6 328 339 10.1038/nrrheum.2013.25 23459013
    [Google Scholar]
  52. Daoussis D. Andonopoulos A.P. Liossis S-N.C. Wnt pathway and IL-17: Novel regulators of joint remodeling in rheumatic diseases. Looking beyond the RANK-RANKL-OPG axis. Semin. Arthri. Rheum. 2010 39 5 369 383 10.1016/j.semarthrit.2008.10.008 19095294
    [Google Scholar]
  53. Sen M. Wnt signalling in rheumatoid arthritis. Rheumatology (Oxford) 2005 44 6 708 713 10.1093/rheumatology/keh553 15705634
    [Google Scholar]
  54. Rabelo F.S. da Mota L.M.H. Lima R.A.C. Lima F.A.C. Barra G.B. de Carvalho J.F. Amato A.A. The Wnt signaling pathway and rheumatoid arthritis. Autoimmun. Rev. 2010 9 4 207 210 10.1016/j.autrev.2009.08.003 19683077
    [Google Scholar]
  55. Takahashi N. Maeda K. Ishihara A. Uehara S. Kobayashi Y. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front. Biosci. 2011 16 1 21 30 10.2741/3673 21196156
    [Google Scholar]
  56. Miao C. Yang Y. He X. Li X. Huang C. Huang Y. Zhang L. Lv X.W. Jin Y. Li J. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell. Signal. 2013 25 10 2069 2078 10.1016/j.cellsig.2013.04.002 23602936
    [Google Scholar]
  57. Xiao C.Y. Pan Y.F. Guo X.H. Wu Y.Q. Gu J.R. Cai D.Z. Expression of β-catenin in rheumatoid arthritis fibroblast-like synoviocytes. Scand. J. Rheumatol. 2011 40 1 26 33 10.3109/03009742.2010.486767 20840015
    [Google Scholar]
  58. Hayat R. Manzoor M. Hussain A. Wnt signaling pathway: A comprehensive review. Cell Biol. Int. 2022 46 6 863 877 10.1002/cbin.11797 35297539
    [Google Scholar]
  59. Liang J.J. Li H.R. Chen Y. Zhou Z. Shi Y.Q. Zhang L.L. Xin L. Zhao D.B. ZNRF3 regulates collagen-induced arthritis through NF-kB and Wnt pathways. Inflammation 2020 43 3 1077 1087 10.1007/s10753‑020‑01193‑1 32125593
    [Google Scholar]
  60. Westra J. Limburg P.C. p38 mitogen-activated protein kinase (MAPK) in rheumatoid arthritis. Mini Rev. Med. Chem. 2006 6 8 867 874 10.2174/138955706777934982 16918493
    [Google Scholar]
  61. Schett G. Zwerina J. Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann. Rheum. Dis. 2008 67 7 909 916 10.1136/ard.2007.074278 17827184
    [Google Scholar]
  62. Son Y. Cheong Y.-K. Kim N.-H. Chung H.-T. Kang D.G. Pae H.-O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Sig. Transduct. 2011 2011 792639 10.1155/2011/792639 21637379
    [Google Scholar]
  63. Kim E.K. Choi E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 4 396 405 10.1016/j.bbadis.2009.12.009
    [Google Scholar]
  64. Cuenda A. Rousseau S. p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta Mol. Cell Res. 2007 1773 8 1358 1375 10.1016/j.bbamcr.2007.03.010 17481747
    [Google Scholar]
  65. Cuenda A. Lizcano J.M. Lozano J. Mitogen activated protein kinases. Front. Medi. 2017 9 80 10.3389/978‑2‑88945‑339‑9
    [Google Scholar]
  66. Suto T. Karonitsch T. The immunobiology of mTOR in autoimmunity. J. Autoimmun. 2020 110 102373 10.1016/j.jaut.2019.102373 31831256
    [Google Scholar]
  67. Perl A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat. Rev. Rheumatol. 2016 12 3 169 182 10.1038/nrrheum.2015.172 26698023
    [Google Scholar]
  68. Malemud C.J. The PI3K/Akt/PTEN/mTOR pathway: A fruitful target for inducing cell death in rheumatoid arthritis? Future Med. Chem. 2015 7 9 1137 1147 10.4155/fmc.15.55 26132523
    [Google Scholar]
  69. Perl A. Metabolic control of immune system activation in rheumatic diseases. Arthr. Rheumatol. 2017 69 12 2259 2270 10.1002/art.40223 28841779
    [Google Scholar]
  70. Laplante M. Sabatini D.M. mTOR signaling in growth control and disease. Cell. 2012 149 2 274 293 10.1016/j.cell.2012.03.017 22500797
    [Google Scholar]
  71. Hess J. Angel P. Schorpp-Kistner M. AP-1 subunits: Quarrel and harmony among siblings. J. Cell Sci. 2004 117 25 5965 5973 10.1242/jcs.01589 15564374
    [Google Scholar]
  72. Shaulian E. Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002 4 5 E131 E136 10.1038/ncb0502‑e131 11988758
    [Google Scholar]
  73. Chen Y.H. Wu K.H. Wu H.P. Unraveling the complexities of toll- like receptors: From molecular mechanisms to clinical applications. Int. J. Mol. Sci. 2024 25 9 5037 10.3390/ijms25095037 38732254
    [Google Scholar]
  74. Wade W.F. Pattern recognition receptors and the innate immune network. Molecular medical microbiology. 2nd Ed Cambridge, US Academic Press 2015 1 449 474 10.1016/B978‑0‑12‑397169‑2.00026‑3
    [Google Scholar]
  75. Wang S. Lv J. Meng S. Tang J. Nie L. Recent advances in nanotheranostics for treat-to-target of rheumatoid arthritis. Adv. Healthc. Mater. 2020 9 6 1901541 10.1002/adhm.201901541 32031759
    [Google Scholar]
  76. Fujimoto M. Naka T. Regulation of cytokine signaling by SOCS family molecules. Trends Immunol. 2003 24 12 659 666 10.1016/j.it.2003.10.008 14644140
    [Google Scholar]
  77. Isomäki P. Alanärä T. Isohanni P. Lagerstedt A. Korpela M. Moilanen T. Visakorpi T. Silvennoinen O. The expression of SOCS is altered in rheumatoid arthritis. Rheumatology (Oxford) 2007 46 10 1538 1546 10.1093/rheumatology/kem198 17726036
    [Google Scholar]
  78. Mu N. Gu J. Huang T. Zhang C. Shu Z. Li M. Hao Q. Li W. Zhang W. Zhao J. Zhang Y. Huang L. Wang S. Jin X. Xue X. Zhang W. Zhang Y. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci. Rep. 2016 6 1 20059 10.1038/srep20059 26821827
    [Google Scholar]
  79. Lin J. Tang J. Lin J. He Y. Yu Z. Jiang R. Yang B. Ou Q. YY1 regulation by miR-124-3p promotes Th17 cell pathogenicity through interaction with T-bet in rheumatoid arthritis. JCI Insight 2021 6 22 e149985 10.1172/jci.insight.149985 34806650
    [Google Scholar]
  80. Katoh M. Katoh M. STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). Int. J. Mol. Med. 2007 19 2 273 278 10.3892/ijmm.19.2.273 17203201
    [Google Scholar]
  81. Groves A.K. Fekete D.M. Shaping sound in space: The regulation of inner ear patterning. Development 2012 139 2 245 257 10.1242/dev.067074 22186725
    [Google Scholar]
  82. Sigurdsson S. Padyukov L. Kurreeman F.A.S. Liljedahl U. Wiman A.C. Alfredsson L. Toes R. Rönnelid J. Klareskog L. Huizinga T.W.J. Alm G. Syvänen A.C. Rönnblom L. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheum. 2007 56 7 2202 2210 10.1002/art.22704 17599733
    [Google Scholar]
  83. Sweeney S.E. Mo L. Firestein G.S. Antiviral gene expression in rheumatoid arthritis: Role of IKKϵ and interferon regulatory factor 3. Arthritis Rheum. 2007 56 3 743 752 10.1002/art.22421 17328045
    [Google Scholar]
  84. Matta B. Song S. Li D. Barnes B.J. Interferon regulatory factor signaling in autoimmune disease. Cytokine 2017 98 15 26 10.1016/j.cyto.2017.02.006 28283223
    [Google Scholar]
  85. Eames H.L. Corbin A.L. Udalova I.A. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease. Transl. Res. 2016 167 1 167 182 10.1016/j.trsl.2015.06.018 26207886
    [Google Scholar]
  86. Vila-del Sol V. Punzón C. Fresno M. IFN-γ-induced TNF-α expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages. J. Immunol. 2008 181 7 4461 4470 10.4049/jimmunol.181.7.4461 18802049
    [Google Scholar]
  87. Balendran T. Lim K. Hamilton J.A. Achuthan A.A. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front. Immunol. 2023 14 1196931 10.3389/fimmu.2023.1196931 37457726
    [Google Scholar]
  88. Thompson C.D. Matta B. Barnes B.J. Therapeutic targeting of IRFs: Pathway-dependence or structure-based? Front. Immunol. 2018 9 2622 10.3389/fimmu.2018.02622 30515152
    [Google Scholar]
  89. Okamoto H. Cujec T.P. Yamanaka H. Kamatani N. Molecular aspects of rheumatoid arthritis: Role of transcription factors. FEBS J. 2008 275 18 4463 4470 10.1111/j.1742‑4658.2008.06582.x 18662303
    [Google Scholar]
  90. Boissier M.C. Cell and cytokine imbalances in rheumatoid synovitis. Joint Bone Spine 2011 78 3 230 234 10.1016/j.jbspin.2010.08.017 20961791
    [Google Scholar]
  91. Rooney M. Condell D. Quinlan W. Daly L. Whelan A. Feighery C. Bresnihan B. Analysis of the histologic variation of synovitis in rheumatoid arthritis. Arthritis Rheum. 1988 31 8 956 963 10.1002/art.1780310803 2457377
    [Google Scholar]
  92. Kaneyama K. Segami N. Nishimura M. Suzuki T. Sato J. Importance of proinflammatory cytokines in synovial fluid from 121 joints with temporomandibular disorders. Br. J. Oral Maxillofac. Surg. 2002 40 5 418 423 10.1016/S0266‑4356(02)00215‑2 12379189
    [Google Scholar]
  93. Isomäki P. Punnonen J. Pro- and anti-inflammatory cytokines in rheumatoid arthritis. Ann. Med. 1997 29 6 499 507 10.3109/07853899709007474 9562516
    [Google Scholar]
  94. Maeda K. Kobayashi Y. Udagawa N. Uehara S. Ishihara A. Mizoguchi T. Kikuchi Y. Takada I. Kato S. Kani S. Nishita M. Marumo K. Martin T.J. Minami Y. Takahashi N. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 2012 18 3 405 412 10.1038/nm.2653 22344299
    [Google Scholar]
  95. Granet C. Maslinski W. Miossec P. Increased AP-1 and NF-κB activation and recruitment with the combination of the proinflammatory cytokines IL-1β, tumor necrosis factor alpha and IL-17 in rheumatoid synoviocytes. Arthritis Res. Ther. 2004 6 3 R190 R198 10.1186/ar1159 15142264
    [Google Scholar]
  96. Malemud C. Negative regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis. Int. J. Mol. Sci. 2017 18 3 484 10.3390/ijms18030484 28245561
    [Google Scholar]
  97. Senolt L. Emerging therapies in rheumatoid arthritis: Focus on monoclonal antibodies. F1000 Res. 2019 8 1549 10.12688/f1000research.18688.1 31508202
    [Google Scholar]
  98. Bossaller L. Rothe A. Monoclonal antibody treatments for rheumatoid arthritis. Expert Opin. Biol. Ther. 2013 13 9 1257 1272 10.1517/14712598.2013.811230 23789825
    [Google Scholar]
  99. Strietholt S. Maurer B. Peters M.A. Pap T. Gay S. Epigenetic modifications in rheumatoid arthritis. Arthritis Res. Ther. 2008 10 5 219 10.1186/ar2500 18947370
    [Google Scholar]
  100. van der Kraan P.M. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat. Rev. Rheumatol. 2017 13 3 155 163 10.1038/nrrheum.2016.219 28148919
    [Google Scholar]
  101. Su N. Jin M. Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: Learning from mouse models. Bone Res. 2014 2 1 14003 10.1038/boneres.2014.3 26273516
    [Google Scholar]
  102. Sobah M.L. Liongue C. Ward A.C. SOCS proteins in immunity, inflammatory diseases, and immune-related cancer. Front. Med. (Lausanne) 2021 8 727987 10.3389/fmed.2021.727987 34604264
    [Google Scholar]
  103. Kraan Van der P. The changing role of TGFẞ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol 2017 13 3 155-163
    [Google Scholar]
/content/journals/crr/10.2174/0115733971346656250403051144
Loading
/content/journals/crr/10.2174/0115733971346656250403051144
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: p38 MAPK ; transcription factors ; synovitis, joint damage ; Rheumatoid arthritis ; NF-κB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test