Skip to content
2000
image of Nasal Chondrocytes Intensively Invade and Repair Pathologically Altered Cartilage Through Intrinsic Genomic Mechanisms: A Narrative Review

Abstract

Articular cartilage, a crucial component of joint structure, ensures smooth articulation and efficient load distribution within the joint. However, its integrity is compromised in various pathological conditions, such as osteoarthritis, leading to significant alterations in its structure and function. This process was significantly correlated with Extracellular Matrix (ECM) degradation, loss of collagen type II, and increased expression of matrix metalloproteinases (MMPs), particularly MMP-13. The ability of chondrocytes to invade into the ECM in pathologically altered tissue leads to cartilage repair and regeneration, and becomes the basis of chondrocyte cell therapy. Furthermore, the altered mechanical properties of the ECM in diseased cartilage, alongside the upregulation of chemotactic factors, contribute to the enhanced migratory behavior of chondrocytes. Interestingly, chondrocytes invading the ECM displayed signs of phenotypic changes, such as increased proliferation and expression of markers associated with chondrocytes' intrinsic genetic properties. The invasion of chondrocytes into the ECM is a response to cartilage damage, possibly driven by an attempt to repair the degraded ECM, and varies in chondrocytes from different sources, , articular cartilage or nasal septum. Nasal chondrocytes highlight the increase of ACAN, SOX9, N-cadherin, COL2A expression and decrease of IL1B, CXCL8, and MMPs gene family expression, which could relate to their unique phenotype properties. However, this response may paradoxically contribute to the progression of cartilage pathology by disrupting the tissue architecture and promoting further degeneration. Our review highlights the endogenous genetic properties of nasal chondrocytes to invade and repair damaged cartilage, offering promising avenues for cartilage repair and regeneration.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971359145250329194434
2025-04-09
2025-10-20
Loading full text...

Full text loading...

References

  1. Eschweiler J. Horn N. Rath B. Betsch M. Baroncini A. Tingart M. Migliorini F. The biomechanics of cartilage—an overview. Life 2021 11 4 302 10.3390/life11040302 33915881
    [Google Scholar]
  2. Castañeda S. Vicente E.F. Osteoarthritis: More than cartilage degeneration. Clin. Rev. Bone Miner. Metab. 2017 15 2 69 81 10.1007/s12018‑017‑9228‑6
    [Google Scholar]
  3. Di Nicola V. Degenerative osteoarthritis a reversible chronic disease. Regen. Ther. 2020 15 149 160 10.1016/j.reth.2020.07.007 33426213
    [Google Scholar]
  4. Zhu X. Chan Y.T. Yung P.S.H. Tuan R.S. Jiang Y. Subchondral bone remodeling: A therapeutic target for osteoarthritis. Front. Cell Dev. Biol. 2021 8 607764 10.3389/fcell.2020.607764 33553146
    [Google Scholar]
  5. Battistelli M. Favero M. Burini D. Trisolino G. Dallari D. De Franceschi L. Goldring S.R. Goldring M.B. Belluzzi E. Filardo G. Grigolo B. Falcieri E. Olivotto E. Morphological and ultrastructural analysis of normal, injured and osteoarthritic human knee menisci. Eur. J. Histochem. 2019 63 1 2998 10.4081/ejh.2019.2998 30739432
    [Google Scholar]
  6. Ozeki N. Koga H. Sekiya I. Degenerative meniscus in knee osteoarthritis: From pathology to treatment. Life 2022 12 4 603 10.3390/life12040603 35455094
    [Google Scholar]
  7. Emmi A. Stocco E. Boscolo-Berto R. Contran M. Belluzzi E. Favero M. Ramonda R. Porzionato A. Ruggieri P. De Caro R. Macchi V. Infrapatellar fat pad-synovial membrane anatomo-fuctional unit: Microscopic basis for Piezo1/2 mechanosensors involvement in osteoarthritis pain. Front. Cell Dev. Biol. 2022 10 886604 10.3389/fcell.2022.886604 35837327
    [Google Scholar]
  8. Singh P. Marcu K.B. Goldring M.B. Otero M. Phenotypic instability of chondrocytes in osteoarthritis: On a path to hypertrophy. Ann. N. Y. Acad. Sci. 2019 1442 1 17 34 10.1111/nyas.13930 30008181
    [Google Scholar]
  9. Adam M.S. Zhuang H. Ren X. Zhang Y. Zhou P. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front. Endocrinol. 2024 15 1393550 10.3389/fendo.2024.1393550 38854686
    [Google Scholar]
  10. Zheng L. Zhang Z. Sheng P. Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev. 2021 66 101249 10.1016/j.arr.2020.101249 33383189
    [Google Scholar]
  11. Pettenuzzo S. Arduino A. Belluzzi E. Pozzuoli A. Fontanella C.G. Ruggieri P. Salomoni V. Majorana C. Berardo A. Biomechanics of chondrocytes and chondrons in healthy conditions and osteoarthritis: A review of the mechanical characterisations at the microscale. Biomedicines 2023 11 7 1942 10.3390/biomedicines11071942 37509581
    [Google Scholar]
  12. Wang N. Lu Y. Rothrauff B.B. Zheng A. Lamb A. Yan Y. Lipa K.E. Lei G. Lin H. Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α. Bone Res. 2023 11 1 13 10.1038/s41413‑023‑00248‑x 36869045
    [Google Scholar]
  13. Zhao Z. Li Y. Wang M. Zhao S. Zhao Z. Fang J. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J. Cell. Mol. Med. 2020 24 10 5408 5419 10.1111/jcmm.15204 32237113
    [Google Scholar]
  14. Wei W. Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact. Mater. 2021 6 12 4830 4855 10.1016/j.bioactmat.2021.05.011 34136726
    [Google Scholar]
  15. Chen M. Jiang Z. Zou X. You X. Cai Z. Huang J. Advancements in tissue engineering for articular cartilage regeneration. Heliyon 2024 10 3 e25400 10.1016/j.heliyon.2024.e25400 38352769
    [Google Scholar]
  16. Sengprasert P. Kamenkit O. Tanavalee A. Reantragoon R. The immunological facets of chondrocytes in osteoarthritis: A narrative review. J. Rheumatol. 2024 51 1 13 24 10.3899/jrheum.2023‑0816 37914220
    [Google Scholar]
  17. Urlić I. Ivković A. Cell sources for cartilage repair—biological and clinical perspective. Cells 2021 10 9 2496 10.3390/cells10092496 34572145
    [Google Scholar]
  18. Li T. Chen S. Pei M. Contribution of neural crest-derived stem cells and nasal chondrocytes to articular cartilage regeneration. Cell. Mol. Life Sci. 2020 77 23 4847 4859 10.1007/s00018‑020‑03567‑y 32504256
    [Google Scholar]
  19. Brittberg M. Lindahl A. Nilsson A. Ohlsson C. Isaksson O. Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994 331 14 889 895 10.1056/NEJM199410063311401 8078550
    [Google Scholar]
  20. Michelacci Y.M. Baccarin R.Y.A. Rodrigues N.N.P. Chondrocyte homeostasis and differentiation: Transcriptional control and signaling in healthy and osteoarthritic conditions. Life 2023 13 7 1460 10.3390/life13071460 37511835
    [Google Scholar]
  21. Guillén-García P. Rodríguez-Iñigo E. Guillén-Vicente I. Caballero-Santos R. Guillén-Vicente M. Abelow S. Giménez-Gallego G. López-Alcorocho J.M. Increasing the dose of autologous chondrocytes improves articular cartilage repair. Cartilage 2014 5 2 114 122 10.1177/1947603513515903 26069691
    [Google Scholar]
  22. Ogura T. Mosier B.A. Bryant T. Minas T. A 20-year follow-up after first-generation autologous chondrocyte implantation. Am. J. Sports Med. 2017 45 12 2751 2761 10.1177/0363546517716631 28745972
    [Google Scholar]
  23. Salucci S. Falcieri E. Battistelli M. Chondrocyte death involvement in osteoarthritis. Cell Tissue Res. 2022 389 2 159 170 10.1007/s00441‑022‑03639‑4 35614364
    [Google Scholar]
  24. Wu X. Liyanage C. Plan M. Stark T. McCubbin T. Barrero R.A. Batra J. Crawford R. Xiao Y. Prasadam I. Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis. Osteoarthritis Cartilage 2023 31 5 613 626 10.1016/j.joca.2022.11.004 36410637
    [Google Scholar]
  25. Lepetsos P. Papavassiliou K.A. Papavassiliou A.G. Redox and NF-κB signaling in osteoarthritis. Free Radic. Biol. Med. 2019 132 90 100 10.1016/j.freeradbiomed.2018.09.025 30236789
    [Google Scholar]
  26. Guo X. Xi L. Yu M. Fan Z. Wang W. Ju A. Liang Z. Zhou G. Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J. Tissue Eng. 2023 14 20417314231164765 10.1177/20417314231164765 37025158
    [Google Scholar]
  27. Evenbratt H. Andreasson L. Bicknell V. Brittberg M. Mobini R. Simonsson S. Insights into the present and future of cartilage regeneration and joint repair. Cell Regen. 2022 11 1 3 10.1186/s13619‑021‑00104‑5 35106664
    [Google Scholar]
  28. Rosini S. Saviola G. Comini L. Molfetta L. Mesenchymal cells are a promising -but still unsatisfying- anti- inflammatory therapeutic strategy for osteoarthritis: A narrative review. Curr. Rheumatol. Rev. 2023 19 3 287 293 10.2174/1573397118666220928141624 36173057
    [Google Scholar]
  29. Lindahl A Brittberg M Cartilage and bone regeneration. Academic Press 2023 16 533 583 10.1016/B978‑0‑12‑824459‑3.00016‑0
    [Google Scholar]
  30. Nam Y. Rim Y.A. Lee J. Ju J.H. Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int. 2018 2018 1 20 10.1155/2018/8490489 29765426
    [Google Scholar]
  31. Jiang S. Guo W. Tian G. Luo X. Peng L. Liu S. Sui X. Guo Q. Li X. Clinical application status of articular cartilage regeneration techniques: Tissue-engineered cartilage brings new hope. Stem Cells Int. 2020 2020 1 16 10.1155/2020/5690252 32676118
    [Google Scholar]
  32. Kon E. Filardo G. Di Matteo B. Perdisa F. Marcacci M. Matrix assisted autologous chondrocyte transplantation for cartilage treatment. Bone Joint Res. 2013 2 2 18 25 10.1302/2046‑3758.22.2000092 23610698
    [Google Scholar]
  33. Kreuz P.C. Kalkreuth R.H. Niemeyer P. Uhl M. Erggelet C. Long-term clinical and MRI results of matrix-assisted autologous chondrocyte implantation for articular cartilage defects of the knee. Cartilage 2019 10 3 305 313 10.1177/1947603518756463 29429373
    [Google Scholar]
  34. Kraeutler M.J. Belk J.W. Purcell J.M. McCarty E.C. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: A systematic review of 5-year outcomes. Am. J. Sports Med. 2018 46 4 995 999 10.1177/0363546517701912 28423287
    [Google Scholar]
  35. Vyas C. Mishbak H. Cooper G. Peach C. Pereira R.F. Bartolo P. Biological perspectives and current biofabrication strategies in osteochondral tissue engineering. Biomanufacturing Reviews 2020 5 1 2 10.1007/s40898‑020‑00008‑y
    [Google Scholar]
  36. Kato Y. Chavez J. Yamada S. Hattori S. Takazawa S. Ohuchi H. A large knee osteochondral lesion treated using a combination of osteochondral autograft transfer and second-generation autologous chondrocyte implantation: A case report. Regen. Ther. 2019 10 10 16 10.1016/j.reth.2018.10.002 30525066
    [Google Scholar]
  37. Roseti L. Grigolo B. Current concepts and perspectives for articular cartilage regeneration. J. Exp. Orthop. 2022 9 1 61 10.1186/s40634‑022‑00498‑4 35776217
    [Google Scholar]
  38. Colombini A. Libonati F. Lopa S. Peretti G.M. Moretti M. de Girolamo L. Autologous chondrocyte implantation provides good long-term clinical results in the treatment of knee osteoarthritis: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2023 31 6 2338 2348 10.1007/s00167‑022‑07030‑2 35716187
    [Google Scholar]
  39. Krill M. Early N. Everhart J.S. Flanigan D.C. Autologous chondrocyte implantation (ACI) for knee cartilage defects. JBJS Rev. 2018 6 2 e5 10.2106/JBJS.RVW.17.00078 29461987
    [Google Scholar]
  40. Goyal D. Goyal A. Keyhani S. Lee E.H. Hui J.H.P. Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: A systematic review of level I and II studies. Arthroscopy 2013 29 11 1872 1878 10.1016/j.arthro.2013.07.271 24075851
    [Google Scholar]
  41. Fuggle N.R. Cooper C. Oreffo R.O.C. Price A.J. Kaux J.F. Maheu E. Cutolo M. Honvo G. Conaghan P.G. Berenbaum F. Branco J. Brandi M.L. Cortet B. Veronese N. Kurth A.A. Matijevic R. Roth R. Pelletier J.P. Martel-Pelletier J. Vlaskovska M. Thomas T. Lems W.F. Al-Daghri N. Bruyère O. Rizzoli R. Kanis J.A. Reginster J.Y. Alternative and complementary therapies in osteoarthritis and cartilage repair. Aging Clin. Exp. Res. 2020 32 4 547 560 10.1007/s40520‑020‑01515‑1 32170710
    [Google Scholar]
  42. Rapp A.E. Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am. J. Physiol. Cell Physiol. 2023 324 2 C377 C394 10.1152/ajpcell.00464.2022 36571440
    [Google Scholar]
  43. Li M. Yin H. Yan Z. Li H. Wu J. Wang Y. Wei F. Tian G. Ning C. Li H. Gao C. Fu L. Jiang S. Chen M. Sui X. Liu S. Chen Z. Guo Q. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022 140 23 42 10.1016/j.actbio.2021.12.006 34896634
    [Google Scholar]
  44. Baddam P. Bayona-Rodriguez F. Campbell S.M. El-Hakim H. Graf D. Properties of the nasal cartilage, from development to adulthood: A scoping review. Cartilage 2022 13 1 19476035221087696 10.1177/19476035221087696 35345900
    [Google Scholar]
  45. Chiu C. Zheng K. Xue M. Du D. Comparative analysis of hyaline cartilage characteristics and chondrocyte potential for articular cartilage repair. Ann. Biomed. Eng. 2024 52 4 920 933 10.1007/s10439‑023‑03429‑1 38190025
    [Google Scholar]
  46. Taïhi I. Nassif A. Isaac J. Fournier B.P. Ferré F. Head to knee: Cranial neural crest-derived cells as promising candidates for human cartilage repair. Stem Cells Int. 2019 2019 1 14 10.1155/2019/9310318 30766608
    [Google Scholar]
  47. van Osch G.J.V.M. Barbero A. Brittberg M. Cells for cartilage regeneration. Engineering and Regeneration. Reference Series in Biomedical Engineering. Gimble J. Marolt Presen D. Oreffo R. Wolbank S. Redl H. Cham Springer 2020 33 99 10.1007/978‑3‑319‑08831‑0_1
    [Google Scholar]
  48. Fu J. He P. Wang D.A. Articular cartilage tissue engineering. Tissue Engineering for Artificial Organs: Regenerative Medicine, Smart Diagnostics and Personalized Medicine WILEY-VCH Verlag GmbH & Co. KGaA Weinheim 2017 10.1002/9783527689934.ch8
    [Google Scholar]
  49. Bačenková D. Trebuňová M. Demeterová J. Živčák J. Human chondrocytes, metabolism of articular cartilage, and strategies for application to tissue engineering. Int. J. Mol. Sci. 2023 24 23 17096 10.3390/ijms242317096 38069417
    [Google Scholar]
  50. Mumme M. Steinitz A. Nuss K.M. Klein K. Feliciano S. Kronen P. Jakob M. von Rechenberg B. Martin I. Barbero A. Pelttari K. Regenerative potential of tissue-engineered nasal chondrocytes in goat articular cartilage defects. Tissue Eng. Part A 2016 22 21-22 1286 1295 10.1089/ten.tea.2016.0159 27633049
    [Google Scholar]
  51. Mumme M. Barbero A. Miot S. Wixmerten A. Feliciano S. Wolf F. Asnaghi A.M. Baumhoer D. Bieri O. Kretzschmar M. Pagenstert G. Haug M. Schaefer D.J. Martin I. Jakob M. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: An observational first-in-human trial. Lancet 2016 388 10055 1985 1994 10.1016/S0140‑6736(16)31658‑0 27789021
    [Google Scholar]
  52. Zou J. Bai B. Yao Y. Progress of co-culture systems in cartilage regeneration. Expert Opin. Biol. Ther. 2018 18 11 1151 1158 10.1080/14712598.2018.1533116 30295075
    [Google Scholar]
  53. Hellingman C.A. Verwiel E.T.P. Slagt I. Koevoet W. Poublon R.M.L. Nolst-Trenité G.J. De Jong R.J.B. Jahr H. Van Osch G.J.V.M. Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their gene expression profiles. Cell Transplant. 2011 20 6 925 940 10.3727/096368910X539119 21054934
    [Google Scholar]
  54. Acevedo L. Pelttari K. Occhetta P. Geurts J. Manferdini C. Lisignoli G. Haug M. Feliciano S. Martin I. Barbero A. Performance of nasal chondrocytes in an osteoarthritic environment. Osteoarthritis Cartilage 2018 26 S37 S38 10.1016/j.joca.2018.02.091
    [Google Scholar]
  55. Zhong L. Huang X. Karperien M. Post J. Correlation between gene expression and osteoarthritis progression in human. Int. J. Mol. Sci. 2016 17 7 1126 10.3390/ijms17071126 27428952
    [Google Scholar]
  56. Jeon J.H. Yun B.G. Lim M.J. Kim S.J. Lim M.H. Lim J.Y. Park S.H. Kim S.W. Rapid cartilage regeneration of spheroids composed of human nasal septum-derived chondrocyte in rat osteochondral defect model. Tissue Eng. Regen. Med. 2020 17 1 81 90 10.1007/s13770‑019‑00231‑w 31983036
    [Google Scholar]
  57. Brown W.E. Lavernia L. Bielajew B.J. Hu J.C. Athanasiou K.A. Human nasal cartilage: Functional properties and structure-function relationships for the development of tissue engineering design criteria. Acta Biomater. 2023 168 113 124 10.1016/j.actbio.2023.07.011 37454708
    [Google Scholar]
  58. Alcaide-Ruggiero L. Molina-Hernández V. Granados M.M. Domínguez J.M. Main and minor types of collagens in the articular cartilage: The role of collagens in repair tissue evaluation in chondral defects. Int. J. Mol. Sci. 2021 22 24 13329 10.3390/ijms222413329 34948124
    [Google Scholar]
  59. Gao Y. Liu S. Huang J. Guo W. Chen J. Zhang L. Zhao B. Peng J. Wang A. Wang Y. Xu W. Lu S. Yuan M. Guo Q. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BioMed Res. Int. 2014 2014 1 8 10.1155/2014/648459 24959581
    [Google Scholar]
  60. Luo Y. Sinkeviciute D. He Y. Karsdal M. Henrotin Y. Mobasheri A. Önnerfjord P. Bay-Jensen A. The minor collagens in articular cartilage. Protein Cell 2017 8 8 560 572 10.1007/s13238‑017‑0377‑7 28213717
    [Google Scholar]
  61. Roughley P.J. Mort J.S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 2014 1 1 8 10.1186/s40634‑014‑0008‑7 26914753
    [Google Scholar]
  62. Sivan S.S. Wachtel E. Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 10 3181 3189 10.1016/j.bbagen.2014.07.013 25065289
    [Google Scholar]
  63. Lefebvre V. Angelozzi M. Haseeb A. SOX9 in cartilage development and disease. Curr. Opin. Cell Biol. 2019 61 39 47 10.1016/j.ceb.2019.07.008 31382142
    [Google Scholar]
  64. Lefebvre V. Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect. Tissue Res. 2017 58 1 2 14 10.1080/03008207.2016.1183667 27128146
    [Google Scholar]
  65. Deng Z.H. Li Y.S. Gao X. Lei G.H. Huard J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage 2018 26 9 1153 1161 10.1016/j.joca.2018.03.007 29580979
    [Google Scholar]
  66. Yamaguchi H. Swaminathan S. Mishina Y. Komatsu Y. Enhanced BMP signaling leads to enlarged nasal cartilage formation in mice. Biochem. Biophys. Res. Commun. 2023 678 173 178 10.1016/j.bbrc.2023.08.053 37640003
    [Google Scholar]
  67. Zhong L. Huang X. Rodrigues E.D. Leijten J.C.H. Verrips T. El Khattabi M. Karperien M. Post J.N. Endogenous DKK1 and FRZB regulate chondrogenesis and hypertrophy in three-dimensional cultures of human chondrocytes and human mesenchymal stem cells. Stem Cells Dev. 2016 25 23 1808 1817 10.1089/scd.2016.0222 27733096
    [Google Scholar]
  68. Acevedo Rua L. Mumme M. Manferdini C. Darwiche S. Khalil A. Hilpert M. Buchner D.A. Lisignoli G. Occhetta P. von Rechenberg B. Haug M. Schaefer D.J. Jakob M. Caplan A. Martin I. Barbero A. Pelttari K. Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Sci. Transl. Med. 2021 13 609 eaaz4499 10.1126/scitranslmed.aaz4499 34516821
    [Google Scholar]
  69. Zhong L. Schivo S. Huang X. Leijten J. Karperien M. Post J. Nitric oxide mediates crosstalk between interleukin 1β and WNT signaling in primary human chondrocytes by reducing DKK1 and FRZB expression. Int. J. Mol. Sci. 2017 18 11 2491 10.3390/ijms18112491 29165387
    [Google Scholar]
  70. Storch C. Fuhrmann H. Schoeniger A. HOX gene expressions in cultured articular and nasal equine chondrocytes. Animals 2021 11 9 2542 10.3390/ani11092542 34573508
    [Google Scholar]
  71. Boutell J. Maciewicz R.A. Parker A.E. Cartilage ECM molecules are differentially expressed between nasal and articular bovine chondrocytes. Int. J. Exp. Pathol. 2000 81 1 A7 10.1046/j.1365‑2613.2000.0145h.x
    [Google Scholar]
  72. Szwedowski D. Szczepanek J. Paczesny Ł. Pękała P. Zabrzyński J. Kruczyński J. Genetics in cartilage lesions: Basic science and therapy approaches. Int. J. Mol. Sci. 2020 21 15 5430 10.3390/ijms21155430 32751537
    [Google Scholar]
  73. Bau B. Gebhard P.M. Haag J. Knorr T. Bartnik E. Aigner T. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum. 2002 46 10 2648 2657 10.1002/art.10531 12384923
    [Google Scholar]
  74. Borghaei R.C. Gorski G. Seutter S. Chun J. Khaselov N. Scianni S. Zinc-binding protein-89 (ZBP-89) cooperates with NF-κB to regulate expression of matrix metalloproteinases (MMPs) in response to inflammatory cytokines. Biochem. Biophys. Res. Commun. 2016 471 4 503 509 10.1016/j.bbrc.2016.02.045 26891870
    [Google Scholar]
  75. Roupakia E. Markopoulos G.S. Kolettas E. IL-12-mediated transcriptional regulation of matrix metalloproteinases. Biosci. Rep. 2018 38 3 BSR20171420 10.1042/BSR20171420 29555826
    [Google Scholar]
  76. Rogers S. Scholpp S. Vertebrate Wnt5a – At the crossroads of cellular signalling. Semin. Cell Dev. Biol. 2022 125 3 10 10.1016/j.semcdb.2021.10.002 34686423
    [Google Scholar]
  77. Mamachan M. Sharun K. Banu S.A. Muthu S. Pawde A.M. Abualigah L. Maiti S.K. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024 88 102380 10.1016/j.tice.2024.102380 38615643
    [Google Scholar]
  78. Baranovsky D.S. Lyundup A.V. Balyasin M.V. Interleukin IL-1β stimulates cartilage scaffold revitalization in vitro with human nasal chondrocytes. Rus. J. Transplantol. Artif. Organs. 2019 21 4 88 95 10.15825/1995‑1191‑2019‑4‑88‑95
    [Google Scholar]
  79. Scotti C. Osmokrovic A. Wolf F. Miot S. Peretti G.M. Barbero A. Martin I. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng. Part A 2012 18 3-4 362 372 10.1089/ten.tea.2011.0234 21902467
    [Google Scholar]
  80. Sahu A. Rathee S. Jain S.K. Patil U.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis. Curr. Rheumatol. Rev. 2024 20 5 469 487 10.2174/0115733971280984240101115203 38284718
    [Google Scholar]
  81. Jenei-Lanzl Z. Meurer A. Zaucke F. Interleukin-1β signaling in osteoarthritis – Chondrocytes in focus. Cell. Signal. 2019 53 212 223 10.1016/j.cellsig.2018.10.005 30312659
    [Google Scholar]
  82. Zhang S. Hu B. Liu W. Wang P. Lv X. Chen S. Liu H. Shao Z. Articular cartilage regeneration: The role of endogenous mesenchymal stem/progenitor cell recruitment and migration. Semin. Arthritis Rheum. 2020 50 2 198 208 10.1016/j.semarthrit.2019.11.001 31767195
    [Google Scholar]
  83. Edderkaoui B. Chemokines in cartilage regeneration and degradation: New insights. Int. J. Mol. Sci. 2023 25 1 381 10.3390/ijms25010381 38203552
    [Google Scholar]
  84. Borrelli J. Jr Olson S.A. Godbout C. Schemitsch E.H. Stannard J.P. Giannoudis P.V. Understanding articular cartilage injury and potential treatments. J. Orthop. Trauma 2019 33 3 Suppl. 6 S6 S12 10.1097/BOT.0000000000001472 31083142
    [Google Scholar]
  85. Goldring M.B. Cartilage biology: Overview. Encyclopedia of Bone Biology Elsevier 2020 521 534 10.1016/B978‑0‑12‑801238‑3.62211‑0
    [Google Scholar]
  86. Matta C. Khademhosseini A. Mobasheri A. Mesenchymal stem cells and their potential for microengineering the chondrocyte niche. EBioMedicine 2015 2 11 1560 1561 10.1016/j.ebiom.2015.10.015 26870763
    [Google Scholar]
  87. Elsaesser A.F. Schwarz S. Joos H. Koerber L. Brenner R.E. Rotter N. Characterization of a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features and their potential for in vivo cartilage regeneration strategies. Cell Biosci. 2016 6 1 11 10.1186/s13578‑016‑0078‑6 26877866
    [Google Scholar]
  88. Lauer J.C. Selig M. Hart M.L. Kurz B. Rolauffs B. Articular chondrocyte phenotype regulation through the cytoskeleton and the signaling processes that originate from or converge on the cytoskeleton: Towards a novel understanding of the intersection between actin dynamics and chondrogenic function. Int. J. Mol. Sci. 2021 22 6 3279 10.3390/ijms22063279 33807043
    [Google Scholar]
  89. Wang G. Beier F. Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis. J. Bone Miner. Res. 2005 20 6 1022 1031 10.1359/JBMR.050113 15883643
    [Google Scholar]
  90. Chawla S. Mainardi A. Majumder N. Dönges L. Kumar B. Occhetta P. Martin I. Egloff C. Ghosh S. Bandyopadhyay A. Barbero A. Chondrocyte hypertrophy in osteoarthritis: Mechanistic studies and models for the identification of new therapeutic strategies. Cells 2022 11 24 4034 10.3390/cells11244034 36552796
    [Google Scholar]
  91. Knudson C.B. Knudson W. Hyaluronan and CD44. Clin. Orthop. Relat. Res. 2004 427 427 Suppl. S152 S162 10.1097/01.blo.0000143804.26638.82 15480059
    [Google Scholar]
  92. Qadri M.M. Targeting CD44 receptor pathways in degenerative joint diseases: Involvement of proteoglycan-4 (PRG4). Pharmaceuticals 2023 16 10 1425 10.3390/ph16101425 37895896
    [Google Scholar]
  93. Vedicherla S. Buckley C.T. in vitro extracellular matrix accumulation of nasal and articular chondrocytes for intervertebral disc repair. Tissue Cell 2017 49 4 503 513 10.1016/j.tice.2017.05.002 28515001
    [Google Scholar]
  94. Shafiee A. Kabiri M. Langroudi L. Soleimani M. Ai J. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J. Biomed. Mater. Res. A 2016 104 3 600 610 10.1002/jbm.a.35603 26507473
    [Google Scholar]
  95. Lehoczky G. Wolf F. Mumme M. Gehmert S. Miot S. Haug M. Jakob M. Martin I. Barbero A. Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clin. Hemorheol. Microcirc. 2020 74 1 67 78 10.3233/CH‑199236 31743993
    [Google Scholar]
  96. Oh C. Lu Y. Liang S. Mori-Akiyama Y. Chen D. de Crombrugghe B. Yasuda H. SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS One 2014 9 9 e107577 10.1371/journal.pone.0107577 25229425
    [Google Scholar]
  97. Rolvien T. Yorgan T.A. Kornak U. Hermans-Borgmeyer I. Mundlos S. Schmidt T. Niemeier A. Schinke T. Amling M. Oheim R. Skeletal deterioration in COL2A1-related spondyloepiphyseal dysplasia occurs prior to osteoarthritis. Osteoarthritis Cartilage 2020 28 3 334 343 10.1016/j.joca.2019.12.011 31958497
    [Google Scholar]
  98. Kiani C. Chen L. Wu Y.J. Yee A.J. Yang B.B. Structure and function of aggrecan. Cell Res. 2002 12 1 19 32 10.1038/sj.cr.7290106 11942407
    [Google Scholar]
  99. Solchaga L.A. Penick K. Goldberg V.M. Caplan A.I. Welter J.F. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng. Part A 2010 16 3 1009 1019 10.1089/ten.tea.2009.0100 19842915
    [Google Scholar]
  100. Choukair D. Hügel U. Sander A. Uhlmann L. Tönshoff B. Inhibition of IGF-I–related intracellular signaling pathways by proinflammatory cytokines in growth plate chondrocytes. Pediatr. Res. 2014 76 3 245 251 10.1038/pr.2014.84 24941214
    [Google Scholar]
  101. Wang Q. Zhou C. Li X. Cai L. Zou J. Zhang D. Xie J. Lai W. TGF-β1 promotes gap junctions formation in chondrocytes via Smad3/Smad4 signalling. Cell Prolif. 2019 52 2 e12544 10.1111/cpr.12544 30444057
    [Google Scholar]
  102. Tang Y. Xiao J. Wang Y. Li M. Shi Z. Effect of adenovirus-mediated TGF-β1 gene transfer on the function of rabbit articular chondrocytes. J. Orthop. Sci. 2017 22 1 149 155 10.1016/j.jos.2016.05.009 27876193
    [Google Scholar]
  103. Malda J. Kreijveld E. Temenoff J.S. Blitterswijk C.A. Riesle J. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 2003 24 28 5153 5161 10.1016/S0142‑9612(03)00428‑9 14568432
    [Google Scholar]
  104. Nasal septum perforation treatment using tissue engineered cartilage graft (NSP). Patent NCT04633928 2023
  105. Clinical trial for the regeneration of cartilage lesions in the knee (NosetoKnee2). Patent NCT02673905 2024
  106. Nasal septum autologous chondrocytes transplantation for condylar resorption after orthognathic surgery. Patent NCT03137914 2021
  107. Treatment of patellofemoral osteoarthritis with engineered cartilage. Patent NCT06163573 2024
  108. Implantation of engineered cartilage grafts for treatment of patellofemoral osteoarthritis versus surgical comparators. (ENCANTO). Patent NCT06576583 2024
  109. Tissue engineered nasal cartilage for reconstruction of the alar lobule. Patent NCT01242618 2014
  110. Tissue engineered nasal cartilage for regeneration of articular cartilage (Nose2Knee). Patent NCT01605201 2018
  111. Shestakova V.A. Klabukov I.D. Baranovskii D.S. Krasilnikova M. Shegay P.V. Kaprin A.D. Assessment of immunological responses-a novel challenge in tissue engineering and regenerative medicine. Biomed. Res. Ther. 2022 9 11 5384 5386 10.15419/bmrat.v9i11.776
    [Google Scholar]
  112. Klabukov I. Atiakshin D. Kogan E. Ignatyuk M. Krasheninnikov M. Zharkov N. Yakimova A. Grinevich V. Pryanikov P. Parshin V. Sosin D. Kostin A.A. Shegay P. Kaprin A.D. Baranovskii D. Post-implantation inflammatory responses to xenogeneic tissue-engineered cartilage implanted in rabbit trachea: The role of cultured chondrocytes in the modification of inflammation. Int. J. Mol. Sci. 2023 24 23 16783 10.3390/ijms242316783 38069106
    [Google Scholar]
  113. Lyamina S. Baranovskii D. Kozhevnikova E. Ivanova T. Kalish S. Sadekov T. Klabukov I. Maev I. Govorun V. Mesenchymal stromal cells as a driver of inflammaging. Int. J. Mol. Sci. 2023 24 7 6372 10.3390/ijms24076372 37047346
    [Google Scholar]
  114. Arora D. Taneja Y. Sharma A. Dhingra A. Guarve K. Role of apoptosis in the pathogenesis of osteoarthritis: An explicative review. Curr. Rheumatol. Rev. 2024 20 1 2 13 10.2174/1573397119666230904150741 37670694
    [Google Scholar]
  115. Smirnova A. Yatsenko E. Baranovskii D. Klabukov I. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: The risk of senescent drift induction in secretome-based therapeutics. Mil. Med. Res. 2023 10 1 60 10.1186/s40779‑023‑00498‑0 38031201
    [Google Scholar]
  116. Maniwa S. Ochi M. Motomura T. Nishikori T. Chen J. Naora H. Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop. Scand. 2001 72 3 299 303 10.1080/00016470152846664 11480609
    [Google Scholar]
  117. Tsai Y.H. Chen C.W. Lai W.F.T. Tang J.R. Deng W.P. Yeh S.D. Chung A. Zuo C.S. Bowley J.F. Phenotypic changes in proliferation, differentiation, and migration of chondrocytes: 3D in vitro models for joint wound healing. J. Biomed. Mater. Res. A 2010 92A 3 1115 1122 10.1002/jbm.a.32465 19301266
    [Google Scholar]
  118. Shellard A. Szabó A. Trepat X. Mayor R. Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis. Science 2018 362 6412 339 343 10.1126/science.aau3301 30337409
    [Google Scholar]
  119. Cheng H.W. Hsiao C.T. Chen Y.Q. Huang C.M. Chan S.I. Chiou A. Kuo J.C. Centrosome guides spatial activation of Rac to control cell polarization and directed cell migration. Life Sci. Alliance 2019 2 1 e201800135 10.26508/lsa.201800135 30737247
    [Google Scholar]
  120. Wu Y. Liu W. Li J. Shi H. Ma S. Wang D. Pan B. Xiao R. Jiang H. Liu X. Decreased Tiam1-mediated Rac1 activation is responsible for impaired directional persistence of chondrocyte migration in microtia. J. Cell. Mol. Med. 2024 28 11 e18443 10.1111/jcmm.18443 38837873
    [Google Scholar]
  121. Im G.I. Gene transfer strategies to promote chondrogenesis and cartilage regeneration. Tissue Eng. Part B Rev. 2016 22 2 136 148 10.1089/ten.teb.2015.0347 26414246
    [Google Scholar]
  122. Wei Y. Hu J. Zhou Q. Wang J. Liu P. Wei Y. Application of co- expressed genes to articular cartilage: New hope for the treatment of osteoarthritis (Review). Mol. Med. Rep. 2012 6 1 16 18 10.3892/mmr.2012.859 22484373
    [Google Scholar]
  123. Zhu M. Zhao B. Wei L. Wang S. Alpha-2-macroglobulin, a native and powerful proteinase inhibitor, prevents cartilage degeneration disease by inhibiting majority of catabolic enzymes and cytokines. Curr. Mol. Biol. Rep. 2021 7 1 1 7 10.1007/s40610‑020‑00142‑z
    [Google Scholar]
  124. Lehmann G.L. Ginsberg M. Nolan D.J. Rodríguez C. Martínez-González J. Zeng S. Voigt A.P. Mullins R.F. Rafii S. Rodriguez-Boulan E. Benedicto I. Retinal pigment epithelium-secreted VEGF-A induces alpha-2-macroglobulin expression in endothelial cells. Cells 2022 11 19 2975 10.3390/cells11192975 36230937
    [Google Scholar]
  125. Madry H. Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J. Gene Med. 2013 15 10 343 355 10.1002/jgm.2741 24006099
    [Google Scholar]
  126. Bardsley K. Kwarciak A. Freeman C. Brook I. Hatton P. Crawford A. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials 2017 112 313 323 10.1016/j.biomaterials.2016.10.014 27770634
    [Google Scholar]
  127. Pelttari K. Mumme M. Barbero A. Martin I. Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine. Curr. Opin. Biotechnol. 2017 47 1 6 10.1016/j.copbio.2017.05.007 28551498
    [Google Scholar]
  128. Trengove A. Di Bella C. O’Connor A.J. The challenge of cartilage integration: Understanding a major barrier to chondral repair. Tissue Eng. Part B Rev. 2022 28 1 114 128 10.1089/ten.teb.2020.0244 33307976
    [Google Scholar]
  129. Cheng A. Schwartz Z. Kahn A. Li X. Shao Z. Sun M. Ao Y. Boyan B.D. Chen H. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng. Part B Rev. 2019 25 1 14 29 10.1089/ten.teb.2018.0119 30079807
    [Google Scholar]
  130. Mumme M. Wixmerten A. Ivkovic A. Engineered cartilage from nasal chondrocytes for knee repair: Clinical relevance of tissue maturation in a randomized, multicenter phase 2 trial. SSRN 2024 10.2139/ssrn.4797651
    [Google Scholar]
  131. Tesch R.S. Takamori E.R. Menezes K. Carias R.B.V. Rebelatto C.L.K. Senegaglia A.C. Daga D.R. Fracaro L. Robert A.W. Pinheiro C.B.R. Aguiar M.F. Blanco P.J. Zilves e.g. Brofman P.R.S. Borojevic R. Nasal septum-derived chondroprogenitor cells control mandibular condylar resorption consequent to orthognathic surgery: A clinical trial. Stem Cells Transl. Med. 2024 13 7 593 605 10.1093/stcltm/szae026 38606986
    [Google Scholar]
  132. Goldberg-Bockhorn E. Schwarz S. Subedi R. Elsässer A. Riepl R. Walther P. Körber L. Breiter R. Stock K. Rotter N. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering. Lasers Med. Sci. 2018 33 2 375 384 10.1007/s10103‑017‑2402‑8 29209868
    [Google Scholar]
  133. Lai Y. Zheng W. Qu M. Xiao C.C. Chen S. Yao Q. Gong W. Tao C. Yan Q. Zhang P. Wu X. Xiao G. Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice. Int. J. Oral Sci. 2022 14 1 33 10.1038/s41368‑022‑00185‑1 35788130
    [Google Scholar]
  134. Maepa M. Razwinani M. Motaung S. Effects of resveratrol on collagen type II protein in the superficial and middle zone chondrocytes of porcine articular cartilage. J. Ethnopharmacol. 2016 178 25 33 10.1016/j.jep.2015.11.047 26647105
    [Google Scholar]
  135. Xie T. Zhu F. Cheng R. Gao J. Hong Y. Deng P. Liu C. Xu Y. FLRT2 mediates chondrogenesis of nasal septal cartilage and mandibular condyle cartilage. Open Med. 2024 19 1 20240902 10.1515/med‑2024‑0902 38584835
    [Google Scholar]
  136. Hamilton N.J. Kanani M. Roebuck D.J. Hewitt R.J. Cetto R. Culme-Seymour E.J. Toll E. Bates A.J. Comerford A.P. McLaren C.A. Butler C.R. Crowley C. McIntyre D. Sebire N.J. Janes S.M. O’Callaghan C. Mason C. De Coppi P. Lowdell M.W. Elliott M.J. Birchall M.A. Tissue-engineered tracheal replacement in a child: A 4-year follow-up study. Am. J. Transplant. 2015 15 10 2750 2757 10.1111/ajt.13318 26037782
    [Google Scholar]
  137. Greaney A.M. Niklason L.E. The history of engineered tracheal replacements: Interpreting the past and guiding the future. Tissue Eng. Part B Rev. 2021 27 4 341 352 10.1089/ten.teb.2020.0238 33045942
    [Google Scholar]
  138. Graceffa V. Vinatier C. Guicheux J. Stoddart M. Alini M. Zeugolis D.I. Chasing chimeras – The elusive stable chondrogenic phenotype. Biomaterials 2019 192 199 225 10.1016/j.biomaterials.2018.11.014 30453216
    [Google Scholar]
  139. Pelttari K. Pippenger B. Mumme M. Feliciano S. Scotti C. Mainil-Varlet P. Procino A. von Rechenberg B. Schwamborn T. Jakob M. Cillo C. Barbero A. Martin I. Adult human neural crest–derived cells for articular cartilage repair. Sci. Transl. Med. 2014 6 251 251ra119 10.1126/scitranslmed.3009688 25163479
    [Google Scholar]
  140. Mennan C. Garcia J. McCarthy H. Owen S. Perry J. Wright K. Banerjee R. Richardson J.B. Roberts S. Human articular chondrocytes retain their phenotype in sustained hypoxia while normoxia promotes their immunomodulatory potential. Cartilage 2019 10 4 467 479 10.1177/1947603518769714 29671342
    [Google Scholar]
  141. Twu C.W. Reuther M.S. Briggs K.K. Sah R.L. Masuda K. Watson D. Effect of oxygen tension on tissue-engineered human nasal septal chondrocytes. Allergy Rhinol. 2014 5 3 ar.2014.5.0097 10.2500/ar.2014.5.0097 25565047
    [Google Scholar]
/content/journals/crr/10.2174/0115733971359145250329194434
Loading
/content/journals/crr/10.2174/0115733971359145250329194434
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test