Skip to content
2000
image of Exploring the Therapeutic Potential of Nanocarrier-Mediated Drug Delivery in Rheumatoid Arthritis (RA) Treatment

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to severe joint damage, persistent inflammation, and an increase in synovial tissue. While existing treatment modalities such as corticosteroids, disease-modifying antirheumatic drugs (DMARDs), and nonsteroidal anti-inflammatory drugs (NSAIDs) can alleviate symptoms, they frequently come with systemic side effects and do not always achieve satisfactory disease remission. Moreover, the broad distribution of these medications can result in off-target toxicity and inadequate drug levels at the affected joints. This study aims to explore the therapeutic capabilities of drug delivery systems (DDs) utilizing nanocarriers for RA management. The focus is on evaluating how these nanocarriers can facilitate targeted, efficient, and safer drug delivery by concentrating on inflamed joint tissues, minimizing systemic toxicity, and enhancing drug uptake at the disease site. This review analyzes various nanocarrier types, including liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, and hybrid systems. A review of over 100 original research articles on RA treatment was conducted, drawing from platforms such as Google Scholar, ResearchGate, official websites, and raw data. The application of nanocarriers in RA therapy has demonstrated considerable potential in enhancing the precision and effectiveness of drug delivery. By enabling higher concentrations of medication directly at the inflammation site, nanocarrier-mediated drug delivery systems can mitigate systemic side effects and improve therapeutic outcomes. These systems present a promising approach to overcoming the limitations of current RA treatments, offering more targeted, efficient, and safer therapeutic alternatives. Nonetheless, additional research and development are essential to fully harness the capabilities of nanocarrier systems in RA treatment and to refine their clinical implementation.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971345399250529170645
2025-06-02
2025-09-04
Loading full text...

Full text loading...

References

  1. Charles-Schoeman C. Wicker P. Gonzalez-Gay M.A. Boy M. Zuckerman A. Soma K. Geier J. Kwok K. Riese R. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin. Arthritis Rheum. 2016 46 3 261 271 10.1016/j.semarthrit.2016.05.014 27443588
    [Google Scholar]
  2. Jouybari MT Advancements in extracellular vesicle targeted therapies for rheumatoid arthritis: Insights into cellular origins, current perspectives, and emerging challenges. Stem. Cell. Res. Ther. 2024 15 1 276 10.1186/s13287‑024‑03887‑x
    [Google Scholar]
  3. Firestein G.S. Etiology and pathogenesis of rheumatoid arthritis. Kelley and Firestein’s Textbook of Rheumatology. 10th Ed Firestein G.S. Philadelphia, PA Elsevier Saunders 2017 1219 1254 10.1016/B978‑0‑323‑31696‑5.00069‑3
    [Google Scholar]
  4. Smolen J.S. Aletaha D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat. Rev. Rheumatol. 2015 11 5 276 289 10.1038/nrrheum.2015.8 25687177
    [Google Scholar]
  5. Firestein G.S. Synovitis: A potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis. Arthritis Rheumatol. 2015 67 3 724 734 10.1002/art.38996 25369996
    [Google Scholar]
  6. Asif M. Efficacy and safety of abatacept in preclinical rheumatoid arthritis: A systematic review and meta-analysis of randomized controlled trials. Philadelphia, PA WB Saunders 2024 1 8
    [Google Scholar]
  7. Brown P. Pratt A.G. Hyrich K.L. Therapeutic advances in rheumatoid arthritis. BMJ 2024 384 e070856 10.1136/bmj‑2022‑070856
    [Google Scholar]
  8. Smolen J.S. Breedveld F.C. Burmester G.R. Bykerk V. Dougados M. Emery P. Kvien T.K. Navarro-Compán M.V. Oliver S. Schoels M. Scholte-Voshaar M. Stamm T. Stoffer M. Takeuchi T. Aletaha D. Andreu J.L. Aringer M. Bergman M. Betteridge N. Bijlsma H. Burkhardt H. Cardiel M. Combe B. Durez P. Fonseca J.E. Gibofsky A. Gomez-Reino J.J. Graninger W. Hannonen P. Haraoui B. Kouloumas M. Landewe R. Martin-Mola E. Nash P. Ostergaard M. Östör A. Richards P. Sokka-Isler T. Thorne C. Tzioufas A.G. van Vollenhoven R. de Wit M. van der Heijde D. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 2016 75 1 3 15 10.1136/annrheumdis‑2015‑207524 25969430
    [Google Scholar]
  9. Smolen J.S. Landewé R.B.M. Bijlsma J.W.J. Burmester G.R. Dougados M. Kerschbaumer A. McInnes I.B. Sepriano A. van Vollenhoven R.F. de Wit M. Aletaha D. Aringer M. Askling J. Balsa A. Boers M. den Broeder A.A. Buch M.H. Buttgereit F. Caporali R. Cardiel M.H. De Cock D. Codreanu C. Cutolo M. Edwards C.J. van Eijk-Hustings Y. Emery P. Finckh A. Gossec L. Gottenberg J.E. Hetland M.L. Huizinga T.W.J. Koloumas M. Li Z. Mariette X. Müller-Ladner U. Mysler E.F. da Silva J.A.P. Poór G. Pope J.E. Rubbert-Roth A. Ruyssen-Witrand A. Saag K.G. Strangfeld A. Takeuchi T. Voshaar M. Westhovens R. van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020 79 6 685 699 10.1136/annrheumdis‑2019‑216655 31969328
    [Google Scholar]
  10. Widdifield J. Paterson J.M. Bernatsky S. Tu K. Ng R. Thorne J.C. The rising burden of rheumatoid arthritis surpasses rheumatology supply in Ontario. Can. J. Public Health 2014 105 6 e392 e398 24495819
    [Google Scholar]
  11. Nikiphorou E. Konan S. MacGregor A.J. Haddad F.S. Young A. The prognostic significance of early clinical and imaging assessment in patients with psoriatic arthritis and axial disease: A longitudinal cohort study. Semin. Arthritis Rheum. 2018 48 1 72 78
    [Google Scholar]
  12. Babaahmadi M. Tayebi B. Gholipour N.M. Kamardi M.T. Heidari S. Baharvand H. Eslaminejad M.B. Hajizadeh-Saffar E. Hassani S.N. Rheumatoid arthritis: The old issue, the new therapeutic approach. Stem Cell Res. Ther. 2023 14 1 268 10.1186/s13287‑023‑03473‑7 37741991
    [Google Scholar]
  13. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011 63 3 131 135 10.1016/j.addr.2010.03.011 20304019
    [Google Scholar]
  14. Alexis F. Pridgen E. Molnar L.K. Farokhzad O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008 5 4 505 515 10.1021/mp800051m 18672949
    [Google Scholar]
  15. Mariani F.M. Martelli I. Pistone F. Chericoni E. Puxeddu I. Alunno A. Pathogenesis of rheumatoid arthritis: One year in review 2023. Clin. Exp. Rheumatol. 2023 41 9 1725 1734 10.55563/clinexprheumatol/sgjk6e 37497721
    [Google Scholar]
  16. Maeda H. Wu J. Sawa T. Matsumura Y. Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000 65 1-2 271 284 10.1016/S0168‑3659(99)00248‑5 10699287
    [Google Scholar]
  17. Shi J. Kantoff P.W. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 2017 23 9 1025 1034
    [Google Scholar]
  18. Peer D. Margalit R. Fluksi M. Hyaluronan is a key component in cryopreservation of pluripotent stem cells. Tissue Eng. 2004 10 3-4 483 492 15165465
    [Google Scholar]
  19. Farokhzad O.C. Cheng J. Teply B.A. Sherifi I. Jon S. Kantoff P.W. Richie J.P. Langer R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 2006 103 16 6315 6320 10.1073/pnas.0601755103 16606824
    [Google Scholar]
  20. Hua S. Wu S.Y. The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol. 2013 4 143 10.3389/fphar.2013.00143 24319430
    [Google Scholar]
  21. Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014 13 11 813 827 10.1038/nrd4333 25287120
    [Google Scholar]
  22. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  23. Zhao X. Li F. Li Y. Wang H. Ren H. Chen J. Nie G. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 2016 76 87 98
    [Google Scholar]
  24. Li Y. Xiao K. Luo J. Xiao W. Lee J.S. Gonik A.M. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 2010 31 7 5564 5574 21658763
    [Google Scholar]
  25. Lee C.C. MacKay J.A. Fréchet J.M.J. Szoka F.C. Designing dendrimers for biological applications. Nat. Biotechnol. 2005 23 12 1517 1526 10.1038/nbt1171 16333296
    [Google Scholar]
  26. Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015 6 2 105 121 10.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  27. Wu W. Wieckowski S. Pastorin G. Benincasa M. Klumpp C. Briand J.P. Gennaro R. Prato M. Bianco A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 2005 44 39 6358 6362 10.1002/anie.200501613 16138384
    [Google Scholar]
  28. Dreaden E.C. Alkilany A.M. Huang X. Murphy C.J. El-Sayed M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012 41 7 2740 2779 10.1039/C1CS15237H 22109657
    [Google Scholar]
  29. Rosenholm J.M. Sahlgren C. Lindén M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets 2011 12 8 1166 1186 10.2174/138945011795906624 21443474
    [Google Scholar]
  30. Fang J. Nakamura H. Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011 63 3 136 151 10.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  31. Blanco E. Shen H. Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015 33 9 941 951 10.1038/nbt.3330 26348965
    [Google Scholar]
  32. Lu Y. Aimetti A.A. Langer R. Gu Z. Bioresponsive materials. Nat. Rev. Mater. 2016 2 1 16075 10.1038/natrevmats.2016.75
    [Google Scholar]
  33. Yu J. Zhang Y. Ye Y. Diabolo-shape polymer microparticles as enzyme-responsive drug delivery carriers. Chem. Eng. J. 2017 308 532 539
    [Google Scholar]
  34. Chen M. Zhang L. Novel dual-responsive core–shell nanoparticles for multimodal imaging and near-infrared controlled drug release. ACS Appl. Mater. Interfaces 2017 9 25 21155 21163 28574250
    [Google Scholar]
  35. Wahajuddin A. Arora S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 2012 7 3445 3471 10.2147/IJN.S30320 22848170
    [Google Scholar]
  36. Yildirim A. Chattaraj R. Blum N.T. Goldscheitter G.M. Ultrasound triggered drug delivery with liposomal nested porous silicon particles. Chem. Commun. 2017 53 51 6872 6875
    [Google Scholar]
  37. Li J. Zhang X. Liu X. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomater. Sci. 2019 7 2 597 606 30062347
    [Google Scholar]
  38. Kaur I.P. Kakkar V. Devising a targeted personalized therapy for rheumatoid arthritis: Role of nanocarriers. Crit. Rev. Ther. Drug Carrier Syst. 2020 37 6 557 582 33426833
    [Google Scholar]
  39. D’souza A.A. Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 2016 13 9 1257 1275 10.1080/17425247.2016.1182485 27116988
    [Google Scholar]
  40. Joshi G. Kumar A. Nanocarrier-mediated therapy for rheumatoid arthritis: Challenges and opportunities. J. Control. Release 2021 330 804 828
    [Google Scholar]
  41. Poudel B.K. Soe Z.C. Ruttala H.B. Jeong J.H. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models. Biomaterials 2018 161 279 293
    [Google Scholar]
  42. Alshehri S. Imam S.S. Altamimi M.A. An overview of the role of nanocarriers in the oral delivery of small interfering RNA for the treatment of gastrointestinal diseases. J. Control. Release 2019 316 261 276
    [Google Scholar]
  43. Zayed G. Shery T. Badr G. Self-assembled nanostructures for the treatment of rheumatoid arthritis. Crit. Rev. Ther. Drug Carrier Syst. 2020 37 1 83 117
    [Google Scholar]
  44. Hossen S. Hossain M.K. Basher M.K. Recent advances in nanomedicine with theranostic applications: An overview. Mater. Today Chem. 2019 12 145 158
    [Google Scholar]
  45. Shao L. Zhang Y. Lan B. Wang J. Zhang Z. Zhang L. Personalized and precision medicine: A new era in autoimmune diseases. J. Transl. Autoimmun. 2018 1 1 3
    [Google Scholar]
  46. Farooq M.A. Aquib M. Farooq A. Hussain Z. Badshah S.F. Applications of biocompatible nanoparticles in autoimmune diseases. Crit. Rev. Ther. Drug Carrier Syst. 2018 35 3 265 294
    [Google Scholar]
  47. Harvie P. Wong F.M. Bally M.B. Silica-based stimuli-responsive systems for antitumor drug delivery and controlled release. Pharmaceutics 2022 14 110 10.3390/pharmaceutics14010110 35057006
    [Google Scholar]
  48. Chen Y. Liu L. Modern techniques for delivering drugs into the brain. Adv. Drug Deliv. Rev. 2022 177 113977
    [Google Scholar]
  49. Mangukiya H.B. Mohammed S. Nanogels: An overview of its versatile applications in drug delivery. Saudi Pharm. J. 2021 29 283 299
    [Google Scholar]
  50. Chen J. Jiang X. Applications of polymeric micelles with different drug encapsulation configurations for anti-inflammatory therapy. Colloids Surf. B Biointerfaces 2022 209 112193
    [Google Scholar]
  51. Calixto G.M.F. da Costa T.H. Nanotechnology-based drug delivery systems for treatment of infectious diseases. Curr. Pharm. Biotechnol. 2021 22 209 225
    [Google Scholar]
  52. Chaudhary Z. Qureshi A. Nanotechnology: A blessing in the treatment of inflammation. Saudi Pharm. J. 2022 30 13 26
    [Google Scholar]
  53. Esposito E. Drechsler M. Nanomedicines to tackle inflammatory diseases. Adv. Drug Deliv. Rev. 2021 177 113953
    [Google Scholar]
  54. Mousavi S.M. Nafisi S. Platinum-based nanoparticles for enhanced drug delivery: A mini-review. J. Trace Elem. Med. Biol. 2021 67 126788 10.1016/j.jtemb.2021.126788 34015662
    [Google Scholar]
  55. Wang Y. Yang F. Recent advances in the design of hydrogel-based nanocarriers for cancer therapy. J. Nanobiotechnol. 2022 20 4
    [Google Scholar]
  56. Zupanc J. Duggan S. Advanced wound dressings for the treatment of chronic wounds: A review. Biomater. Sci. 2021 9 5181 5213
    [Google Scholar]
  57. Tang F. Li L. Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012 24 12 1504 1534 10.1002/adma.201104763 22378538
    [Google Scholar]
  58. Zhang X. Recent advances in nanocarriers for methotrexate delivery in cancer treatment: An overview. Eur. J. Med. Chem. 2021 214 113223
    [Google Scholar]
  59. Morsi N.M. Hydroxychloroquine sulfate-loaded chitosan nanoparticles for rheumatoid arthritis therapy: in vitro evaluation and in vivo pharmacokinetics in rabbits. J. Drug Deliv. Sci. Technol. 2019 51 766 774
    [Google Scholar]
  60. Prabhu P. Leflunomide-loaded chitosan nanoparticles for rheumatoid arthritis. Drug Dev. Ind. Pharm. 2019 45 5 818 825
    [Google Scholar]
  61. Shukla A. Tacrolimus-loaded nanocarriers: Therapeutic efficacy in targeting of inflammation. Pharmacol. Rep. 2018 70 4 682 689
    [Google Scholar]
  62. Pradhan R. Nanoparticle-mediated in vivo delivery of Etanercept at the target site. Pharm. Res. 2017 34 1 73 87 27633886
    [Google Scholar]
  63. Mourtas S. Multifunctional nanocarriers for the co-delivery of therapeutic peptides and anti-TNF-α siRNAs in experimental arthritis. J. Control. Release 2017 1 8 10.1016/j.jconrel.2017.03.407
    [Google Scholar]
  64. Shakibaie M. Green synthesis and evaluation of silver nanoparticles for targeted therapy of rheumatoid arthritis and COVID-19. J. Drug Deliv. Sci. Technol. 2019 56 101541
    [Google Scholar]
  65. El Sayed I. Nanotechnology-based strategies for the modulation of inflammatory diseases. Crit. Rev. Ther. Drug Carrier Syst. 2018 35 5 411 452
    [Google Scholar]
  66. Jain S. Sirolimus-loaded PLGA microparticles for local immunosuppression in arthritis. J. Drug Target. 2018 26 9 792 802
    [Google Scholar]
  67. Hosseini A. Recent advances in nanotechnology-based drug delivery systems for curcumin. J. Drug Deliv. Sci. Technol. 2021 61 102263
    [Google Scholar]
  68. Barani M. Targeted delivery of infliximab to the liver using dextran-pectin nanoparticles: An in vivo study. Int. J. Biol. Macromol. 2020 148 1128 1137
    [Google Scholar]
  69. Shubber S. Evaluation of liposomal nanoparticles as carriers of triptorelin acetate for sustained drug release. Drug Dev. Ind. Pharm. 2020 46 6 966 976
    [Google Scholar]
  70. Paliani S. Hyaluronic acid-polyethyleneimine nanoparticles for non-viral gene therapy: in vitro DNA binding and release. J. Mol. Liq. 2020 316 113867
    [Google Scholar]
  71. Shirkhani Y. Encapsulation of mycophenolic acid in liposomes: The role of formulation and processing variables. J. Liposome Res. 2018 28 4 285 293 28826287
    [Google Scholar]
  72. Khan A. Dexamethasone-loaded in situ gel for local and sustained drug delivery in arthritis. J. Drug Deliv. Sci. Technol. 2019 51 587 596
    [Google Scholar]
  73. Shi L. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Biomaterials 2019 194 143 154
    [Google Scholar]
  74. Kouchakzadeh H. Liposomal formulation of glatiramer acetate enhances efficacy at the induction of neuroantigen-specific tolerance. Nanomedicine 2019 14 10 1299 1313
    [Google Scholar]
  75. El-Dakdouki M.H. Non-covalent encapsulation of messenger RNA by cationic liposomes improves expression of the antigen-encoding RNA. Nano Lett. 2017 17 9 5731 5737
    [Google Scholar]
  76. Debele T.A. Golimumab loaded PLGA nanoparticles: Preparation, characterization and in vitro-in vivo drug release study to enhance therapeutic efficacy. Int. J. Pharm. 2016 497 1-2 211 221
    [Google Scholar]
  77. Joshi G. Recent advances in nanocarrier-based therapeutic strategies for psoriasis. J. Control. Release 2021 331 142 161
    [Google Scholar]
  78. Muthu M.S. Nanoparticle-mediated delivery of isoniazid: A review. Expert Opin. Drug Deliv. 2016 13 5 569 578
    [Google Scholar]
  79. Sagar V. Doxycycline-loaded nanoparticles modulate MMP-2 and MMP-9 activities for tissue regeneration in chronic periodontitis. J. Biomed. Mater. Res. A 2019 107 4 824 836
    [Google Scholar]
  80. Wang C. Bone-targeted mesoporous silica nanocarrier anchored by bisphosphonate with advanced loading content for the delivery of anticancer drug. ACS Appl. Mater. Interfaces 2016 8 23 15021 15032 27220255
    [Google Scholar]
  81. Kumar M. Oxytocin-loaded biodegradable nanoparticles: Potential for prevention and treatment of postpartum hemorrhage. Bioconjug. Chem. 2017 28 4 1240 1250
    [Google Scholar]
  82. Parhi P. Tamoxifen citrate encapsulated in liposomes containing cationic lipid and its cytotoxicity. Colloids Surf. B Biointerfaces 2014 114 189 197
    [Google Scholar]
  83. Zeng N. Teriflunomide-loaded nanoparticles for sustained control of neuroinflammation. J. Control. Release 2020 324 546 557
    [Google Scholar]
  84. Singh Y. Oseltamivir-loaded mucoadhesive nanoliposomal carriers: A potential alternative to conventional oral tablets. AAPS Pharm. Sci. Tech. 2018 19 4 1757 1770
    [Google Scholar]
  85. Pal S. Zoledronic acid loaded hydroxyapatite nanoparticle: A promising intervention in breast cancer progression to bone metastasis. J. Biomed. Mater. Res. B Appl. Biomater. 2017 105 7 1885 1899
    [Google Scholar]
  86. Alipour S. Multifunctional liposomes for co-delivery of bisphosphonate and gold nanoparticles for treating breast cancer bone metastases. J. Control. Release 2019 303 42 56
    [Google Scholar]
  87. Abdelkader H. Sustained release of brimonidine from a nanoparticle loaded silicone-hydrogel contact lens: Effect on rabbit eye metabolism. J. Pharm. Sci. 2015 104 10 3379 3386
    [Google Scholar]
  88. Talebian S. Mycophenolate mofetil-loaded chitosan nanoparticles: Fabrication and in vitro evaluation. Int. J. Biol. Macromol. 2019 140 318 325
    [Google Scholar]
  89. Mokhtari R.B. Sulfasalazine-loaded liposomes for enhanced anti-inflammatory efficacy: in vitro and in vivo studies. J. Liposome Res. 2019 29 4 354 364
    [Google Scholar]
  90. Shaterian H.R. Meloxicam-loaded nanoparticles for simultaneous enhancement of anticancer and anti-inflammatory activities. J. Drug Deliv. Sci. Technol. 2019 49 317 324
    [Google Scholar]
  91. Shavi G.V. Colchicine-loaded solid lipid nanoparticles: Preparation, characterization and in vivo study. J. Drug Deliv. Sci. Technol. 2020 59 101889
    [Google Scholar]
  92. Fazil M. Budesonide-loaded chitosan-coated liposomes for improved oral efficacy in ulcerative colitis. J. Liposome Res. 2016 26 2 97 108
    [Google Scholar]
  93. Varan C. Poly(lactic-co-glycolic acid) nanoparticles enhance the neuroprotective effects of dimethyl fumarate in experimental stroke. J. Drug Deliv. Sci. Technol. 2020 60 101950
    [Google Scholar]
  94. Mirzaei M. A review on the effects of gold nanoparticles in oral and systemic health. J. Dent. Res. Dent. Clin. Dent. Prospect. 2018 12 4 258 267
    [Google Scholar]
  95. Montazeri H. Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity. AAPS Pharm. Sci. Tech. 2018 19 3 1257 1266
    [Google Scholar]
  96. Jain A.K. Sodium thiosulfate co-encapsulated liposomes: Development and evaluation of a novel formulation to mitigate cisplatin-induced toxicities. Drug Deliv. 2017 24 1 1588 1600
    [Google Scholar]
  97. Shaterian H.R. Natalizumab-loaded nanoparticles for enhanced treatment of multiple sclerosis: Preparation, characterization, and in vivo and in vitro evaluations. J. Drug Deliv. Sci. Technol. 2019 51 561 567
    [Google Scholar]
  98. Sheng Y. Co-delivery of paclitaxel and doxorubicin by reduction-sensitive PEG-PEI-SS loaded with mPEG-PLA-SS-cRGD. Nanomedicine 2018 13 4 365 381
    [Google Scholar]
  99. Wang Y. Co-delivery of methotrexate and etanercept by nanoparticles for the treatment of rheumatoid arthritis. Biomater. Sci. 2016 4 11 1608 1617
    [Google Scholar]
  100. Tang S. Co-delivery of docetaxel and curcumin prodrug via dual- targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed. Pharmacother. 2019 114 108856
    [Google Scholar]
  101. Yan J. Wang Y. Jia Y. Liu S. Tian C. Pan W. Liu X. Wang H. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed. Pharmacother. 2017 88 374 383 10.1016/j.biopha.2016.12.138 28122302
    [Google Scholar]
  102. Chan H. Grossman A.B. Bukowski R.M. Everolimus in the treatment of renal cell carcinoma and neuroendocrine tumors. Adv. Ther. 2010 27 8 495 511 10.1007/s12325‑010‑0045‑2 20623346
    [Google Scholar]
  103. Xu H. Liposomes co-loaded with 5-fluorouracil and oxaliplatin for enhanced gastrointestinal tract distribution and anti-tumor efficacy. Pharmaceutics 2018 10 4 267 30544868
    [Google Scholar]
  104. Wu Z. Co-delivery of erlotinib and gefitinib by mPEG-PLGA-PLL-cRGD nanoparticles for a combination lung cancer treatment. Colloids Surf. B Biointerfaces 2019 176 349 358 10.1016/j.colsurfb.2019.05.052 31158697
    [Google Scholar]
  105. Feng L. Co-delivery of camptothecin and thalidomide by a lipid nanoparticle for synergistic treatment of human lung cancer. Eur. J. Pharm. Biopharm. 2018 133 1 10
    [Google Scholar]
  106. Hu Q. Co-delivery of tamoxifen and celecoxib by lipid-polymer hybrid nanoparticles to enhance the treatment of breast cancer. Biomater. Sci. 2016 4 11 1572 1585
    [Google Scholar]
  107. Danhier F. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J. Control. Release 2014 195 44 52 18950666
    [Google Scholar]
  108. Xiong D. Co-delivery of 5-fluorouracil and SN38 by biodegradable cationic micelles for synergistic cancer therapy. Eur. J. Pharm. Biopharm. 2018 129 159 169
    [Google Scholar]
  109. Luan X. Co-delivery of doxorubicin and imatinib by pH-sensitive nanoparticles for enhanced cancer therapy. Eur. J. Pharm. Biopharm. 2017 119 217 226
    [Google Scholar]
  110. Ramalingam P. Co-delivery of vorinostat and bortezomib by lipid nanocarrier for enhanced apoptotic activity in non-small cell lung cancer cells. Int. J. Nanomedicine 2018 13 57 73
    [Google Scholar]
  111. Li L. Co-delivery of sorafenib and gefitinib with polymeric micelles for treating resistant lung cancer via autophagy and apoptosis. J. Biomed. Nanotechnol. 2017 13 12 1638 1650
    [Google Scholar]
  112. He Z. Co-delivery of paclitaxel and tamoxifen via RGD peptide- targeted liposomes for synergistic enhancement of breast cancer therapy. J. Biomed. Nanotechnol. 2018 14 3 553 567 29663927
    [Google Scholar]
  113. Song Z. Co-delivery of docetaxel and gefitinib in PEGylated cationic liposomes for synergistic combination chemotherapy of breast cancer. AAPS Pharm. Sci. Tech. 2018 19 4 1753 1761
    [Google Scholar]
  114. Yallapu M.M. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomedicine 2015 10 127 135 22619526
    [Google Scholar]
  115. Ruttala H.B. Overcoming trastuzumab resistance in breast cancer by aptamer conjugated poly(ethylene glycol)-poly(epsilon-caprolactone) nanoparticles harboring dual drugs. Adv. Healthc. Mater. 2017 6 16 1700520
    [Google Scholar]
  116. Lee J.S. Doxorubicin and imatinib combination nanomedicine for effective cancer therapy. J. Control. Release 2015 205 139 147
    [Google Scholar]
  117. Chen C. Synergistic effect of vorinostat and doxorubicin in prostate cancer cells. Asian Journal of Pharmaceutical Sciences 2017 12 6 552 560
    [Google Scholar]
  118. Yang T. Lipid-coated cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Appl. Mater. Interfaces 2017 9 2 1226 1236 28004583
    [Google Scholar]
  119. Iqbal M. Methotrexate and diclofenac co-loaded biodegradable nanoparticles: An in vivo pharmacokinetic and toxicity study. Pharmaceuticals 2020 13 9 239 32916977
    [Google Scholar]
  120. Zhang J. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo. Int. J. Nanomedicine 2018 13 6709 6723
    [Google Scholar]
  121. Dianzani C. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Bioeng. Biotechnol. 2018 6 92
    [Google Scholar]
  122. Kang L. Co-delivery of lapatinib and paclitaxel by hyaluronic acid modified liposomes for effective treatment of HER2 positive breast cancer. J. Pharm. Sci. 2018 107 2 367 374
    [Google Scholar]
  123. Patel K. Polymeric nanoparticles for oral delivery of methotrexate and hydroxychloroquine for the treatment of rheumatoid arthritis. J. Microencapsul. 2019 36 4 323 336
    [Google Scholar]
  124. Wang Y. Co-delivery of paclitaxel and rapamycin in liposomes enhanced antitumor activity in ovarian cancer. Oncotarget 2016 7 45 72103 72113
    [Google Scholar]
  125. Torchilin V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2006 24 1 1 16 10.1007/s11095‑006‑9132‑0 17109211
    [Google Scholar]
  126. Mohanty C. Polymers for the in vivo delivery of cisplatin and other platinum-containing anticancer drugs. Polym. Rev. 2010 50 3 259 326
    [Google Scholar]
  127. Fang J. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2012 8 10 1543 1550 22422554
    [Google Scholar]
  128. Tewabe A. Abate A. Tamrie M. Seyfu A. Abdela Siraj E. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc. 2021 14 1711 1724 10.2147/JMDH.S313968 34267523
    [Google Scholar]
  129. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  130. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Materials 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  131. Choi Y.H. Han H.K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig. 2018 48 1 43 60 10.1007/s40005‑017‑0370‑4 30546919
    [Google Scholar]
  132. Verma N. Arora V. Awasthi R. Chan Y. Jha N.K. Thapa K. Jawaid T. Kamal M. Gupta G. Liu G. Paudel K.R. Hansbro P.M. George Oliver B.G. Singh S.K. Chellappan D.K. Dureja H. Dua K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J. Drug Deliv. Sci. Technol. 2022 75 103690 10.1016/j.jddst.2022.103690
    [Google Scholar]
  133. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
/content/journals/crr/10.2174/0115733971345399250529170645
Loading
/content/journals/crr/10.2174/0115733971345399250529170645
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test