Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

RA is characterized by chronic inflammation, joint damage, and systemic complications. Despite available treatments, many patients experience inadequate responses or adverse effects. Novel therapeutic strategies are needed to address these challenges. Nanoparticulate technologies offer promising opportunities to enhance drug delivery and targeting in RA treatment. The main objective is to explore recent advancements in nanoparticulate technologies for RA treatment, focusing on their potential to improve drug delivery and efficacy while minimizing adverse effects. This review examines recent studies on nanoparticulate technologies for treating rheumatoid arthritis (RA), focusing on the use of nanocarriers for targeted drug delivery. Studies investigating the effectiveness of nanocarriers in delivering drugs specifically for RA treatment were included in the analysis. Nanoparticulate technologies have shown promise in improving the delivery and efficacy of RA treatments. Various nanocarriers, such as liposomes, polymeric nanoparticles, and micelles, have been developed to enhance drug delivery to inflamed joints. These nanocarriers loaded with curcumin, Aceclofenac, Boswellic acid, methotrexate, resveratrol, can improve drug stability, prolong circulation time, and enhance targetability to inflamed tissues. By overcoming the limitations of traditional therapies, these technologies have the potential to improve patient outcomes and quality of life. Future research should focus on optimizing nanocarrier design, evaluating long-term safety, and conducting clinical trials to validate their efficacy in RA management.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971315944240712101011
2024-07-30
2025-09-01
Loading full text...

Full text loading...

References

  1. SokkaT. AbelsonB. PincusT. Mortality in rheumatoid arthritis: 2008 update.Clin. Exp. Rheumatol.2008265Suppl. 51S35S6119026144
    [Google Scholar]
  2. McInnesI.B. O’DellJ.R. State-of-the-art: Rheumatoid arthritis: Figure 1.Ann. Rheum. Dis.201069111898190610.1136/ard.2010.13468420959326
    [Google Scholar]
  3. EdwardsJ.C.W. CambridgeG. B-cell targeting in rheumatoid arthritis and other autoimmune diseases.Nat. Rev. Immunol.20066539440310.1038/nri183816622478
    [Google Scholar]
  4. McInnesI.B. SchettG. Cytokines in the pathogenesis of rheumatoid arthritis.Nat. Rev. Immunol.20077642944210.1038/nri209417525752
    [Google Scholar]
  5. KefferJ. ProbertL. CazlarisH. GeorgopoulosS. KaslarisE. KioussisD. KolliasG. Transgenic mice expressing human tumour necrosis factor: A predictive genetic model of arthritis.EMBO J.199110134025403110.1002/j.1460‑2075.1991.tb04978.x1721867
    [Google Scholar]
  6. JoostenL.A.B. HelsenM.M.A. SaxneT. van de LooF.A.J. HeinegårdD. van den BergW.B. IL-1 α β blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation.J. Immunol.199916395049505510.4049/jimmunol.163.9.504910528210
    [Google Scholar]
  7. SinghJA. ChristensenR. WellsGA. Suarez-AlmazorME. BuchbinderR. Lopez-OlivoMA. GhogomuET. TugwellP. Biologics for rheumatoid arthritis: An overview of Cochrane reviews.Cochrane Database Syst Rev.200920094CD00784810.1002/14651858.CD007848
    [Google Scholar]
  8. SinghJA. WellsGA. ChristensenR. GhogomuET. MaxwellLJ. MacDonaldJK. FilippiniG. SkoetzN. FrancisDK. LopesLC. GuyattGH. Adverse effects of biologics: A network meta-analysis and Cochrane overview.Cochrane Database Syst. Rev.201120112CD00879410.1002/14651858.CD008794.pub2
    [Google Scholar]
  9. TarnerI.H. Müller-LadnerU. GayS. Emerging targets of biologic therapies for rheumatoid arthritis.Nat. Clin. Pract. Rheumatol.20073633634510.1038/ncprheum050617538565
    [Google Scholar]
  10. RaoP. KnausE.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond.J. Pharm. Pharm. Sci.20081128110.18433/J3T88619203472
    [Google Scholar]
  11. ScottD.L. WolfeF. HuizingaT.W.J. Rheumatoid arthritis.Lancet201037697461094110810.1016/S0140‑6736(10)60826‑420870100
    [Google Scholar]
  12. SalliotC. FinckhA. KatchamartW. LuY. SunY. BombardierC. KeystoneE. Indirect comparisons of the efficacy of biological antirheumatic agents in rheumatoid arthritis in patients with an inadequate response to conventional disease-modifying antirheumatic drugs or to an anti-tumour necrosis factor agent: A meta-analysis.Ann. Rheum. Dis.201170226627110.1136/ard.2010.13213421097801
    [Google Scholar]
  13. HoesJ.N. JacobsJ.W.G. ButtgereitF. BijlsmaJ.W.J. Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis.Nat. Rev. Rheumatol.201061269370210.1038/nrrheum.2010.17921119718
    [Google Scholar]
  14. HetlandM.L. Stengaard-PedersenK. JunkerP. LottenburgerT. HansenI. AndersenL.S. TarpU. SvendsenA. PedersenJ.K. SkjødtH. LauridsenU.B. EllingsenT. HansenG.V.O. LindegaardH. VestergaardA. JurikA.G. ØstergaardM. Hørslev-PetersenK. Aggressive combination therapy with intra-articular glucocorticoid injections and conventional disease-modifying anti-rheumatic drugs in early rheumatoid arthritis: Second-year clinical and radiographic results from the CIMESTRA study.Ann. Rheum. Dis.200867681582210.1136/ard.2007.07630717878209
    [Google Scholar]
  15. van RooijenN. SandersA. van den BergT.K. Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine.J. Immunol. Methods19961931939910.1016/0022‑1759(96)00056‑78690935
    [Google Scholar]
  16. PennanenN. LapinjokiS. UrttiA. MönkkönenJ. Effect of liposomal and free bisphosphonates on the IL-1 β, IL-6 and TNF α secretion from RAW 264 cells in vitro.Pharm. Res.199512691692210.1023/A:10162816087737667201
    [Google Scholar]
  17. C̆eponisA. WarisE. MönkkönenJ. LaasonenL. HyttinenM. SolovievaS.A. HanemaaijerR. BitschA. KonttinenY.T. Effects of low-dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen-induced arthritis in rabbits.Arthritis Rheum.20014481908191610.1002/1529‑0131(200108)44:8<1908::AID‑ART329>3.0.CO;2‑411508444
    [Google Scholar]
  18. van LentP.L.E.M. van den BersselaarL. van den HoekA.E.M. van de EndeM. DijkstraC.D. van RooijenN. van de PutteL.B.A. van den BergW.B. Reversible depletion of synovial lining cells after intra-articular treatment with liposome-encapsulated dichloromethylene diphosphonate.Rheumatol. Int.1993131213010.1007/BF002903308516620
    [Google Scholar]
  19. PatrignaniP. TacconelliS. SciulliM.G. CaponeM.L. New insights into COX-2 biology and inhibition.Brain Res. Brain Res. Rev.200548235235910.1016/j.brainresrev.2004.12.02415850674
    [Google Scholar]
  20. SharmaG. SainiM.K. ThakurK. KapilN. GargN.K. RazaK. GoniV.G. PareekA. KatareO.P. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: A preclinical study.Nanomedicine (Lond.)201712661563810.2217/nnm‑2016‑040528186461
    [Google Scholar]
  21. QuanL. ZhangY. CrielaardB.J. DusadA. LeleS.M. RijckenC.J.F. MetselaarJ.M. KostkováH. EtrychT. UlbrichK. KiesslingF. MikulsT.R. HenninkW.E. StormG. LammersT. WangD. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes.ACS Nano20148145846610.1021/nn404820524341611
    [Google Scholar]
  22. HwangJ. RodgersK. OliverJ.C. SchluepT. α-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy.Int. J. Nanomedicine20083335937118990945
    [Google Scholar]
  23. WilliamsA. GoodfellowR. TopleyN. AmosN. WilliamsB. The suppression of rat collagen-induced arthritis and inhibition of macrophage derived mediator release by liposomal methotrexate formulations.Inflamm. Res.200049415516110.1007/s00011005057510858015
    [Google Scholar]
  24. HungY.M. LinL. ChenC.M. ChiouJ.Y. WangY.H. WangP.Y.P. WeiJ.C.C. The effect of anti-rheumatic medications for coronary artery diseases risk in patients with rheumatoid arthritis might be changed over time: A nationwide population-based cohort study.PLoS One2017126e017908110.1371/journal.pone.017908128658301
    [Google Scholar]
  25. AmerM. BeadV.R. BathonJ. BlumenthalR.S. EdwardsD.N. Use of nonsteroidal anti-inflammatory drugs in patients with cardiovascular disease: A cautionary tale.Cardiology201018420421220539104
    [Google Scholar]
  26. KhanZ. KhanN. TiwariR.P. SahN.K. PrasadG.B. BisenP.S. Biology of Cox-2: an application in cancer therapeutics.Curr. Drug Targets20111271082109310.2174/13894501179567776421443470
    [Google Scholar]
  27. SrinathP. VyasS.P. DiwanP.V. Preparation and pharmacodynamic evaluation of liposomes of indomethacin.Drug Dev. Ind. Pharm.200026331332110.1081/DDC‑10010035910738648
    [Google Scholar]
  28. SrinathP. CharyM.G. VyasS.P. DiwanP.V. Long-circulating liposomes of indomethacin in arthritic rats — a biodisposition study.Pharm. Acta Helv.200074439940410.1016/S0031‑6865(00)00023‑610812940
    [Google Scholar]
  29. PalakurthiS. VyasS.P. DiwanP.V. Biodisposition of PEG-coated lipid microspheres of indomethacin in arthritic rats.Int. J. Pharm.20052901-2556210.1016/j.ijpharm.2004.11.01715664130
    [Google Scholar]
  30. FahmyT.M. FongP.M. ParkJ. ConstableT. SaltzmanW.M. Nanosystems for simultaneous imaging and drug delivery to T cells.AAPS J.200792E171E18010.1208/aapsj090201917614359
    [Google Scholar]
  31. CroffordL.J. Use of NSAIDs in treating patients with arthritis.Arthritis Res. Ther.201315Suppl. 3S210.1186/ar417424267197
    [Google Scholar]
  32. StrehlC. van der GoesM.C. BijlsmaJ.W.J. JacobsJ.W.G. ButtgereitF. Glucocorticoid-targeted therapies for the treatment of rheumatoid arthritis.Expert Opin. Investig. Drugs201726218719510.1080/13543784.2017.127656228043173
    [Google Scholar]
  33. BrownP.M. PrattA.G. IsaacsJ.D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers.Nat. Rev. Rheumatol.2016121273174210.1038/nrrheum.2016.17527784891
    [Google Scholar]
  34. ReinP. MuellerR.B. Treatment with biologicals in rheumatoid arthritis: An overview.Rheumatol. Ther.20174224726110.1007/s40744‑017‑0073‑328831712
    [Google Scholar]
  35. SchumacherM. JunckerT. SchnekenburgerM. GaaschtF. DiederichM. Natural compounds as inflammation inhibitors.Genes Nutr.201162899210.1007/s12263‑011‑0231‑021537905
    [Google Scholar]
  36. BernardiA. ZilbersteinA.C.C.V. JägerE. CamposM.M. MorroneF.B. CalixtoJ.B. PohlmannA.R. GuterresS.S. BattastiniA.M.O. Effects of indomethacin-loaded nanocapsules in experimental models of inflammation in rats.Br. J. Pharmacol.200915841104111110.1111/j.1476‑5381.2009.00244.x19422380
    [Google Scholar]
  37. AsthanaA. ChauhanA.S. DiwanP.V. JainN.K. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled sitespecific delivery of acidic anti-inflammatory active ingredient.AAPS PharmSciTech200563E536E54210.1208/pt06036716354015
    [Google Scholar]
  38. ChandrasekarD. SistlaR. AhmadF.J. KharR.K. DiwanP.V. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery.J. Biomed. Mater. Res. A200782A19210310.1002/jbm.a.3112217269145
    [Google Scholar]
  39. AriasJ.L. López-ViotaM. López-ViotaJ. DelgadoÁ.V. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment.Int. J. Pharm.20093821-227027610.1016/j.ijpharm.2009.08.01919712736
    [Google Scholar]
  40. MetselaarJ.M. WaubenM.H.M. Wagenaar-HilbersJ.P.A. BoermanO.C. StormG. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes.Arthritis Rheum.20034872059206610.1002/art.1114012847701
    [Google Scholar]
  41. van den HovenJ.M. HofkensW. WaubenM.H.M. Wagenaar-HilbersJ.P.A. BeijnenJ.H. NuijenB. MetselaarJ.M. StormG. Optimizing the therapeutic index of liposomal glucocorticoids in experimental arthritis.Int. J. Pharm.2011416247147710.1016/j.ijpharm.2011.03.02521440612
    [Google Scholar]
  42. IshiharaT. KubotaT. ChoiT. HigakiM. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate.J. Pharmacol. Exp. Ther.2009329241241710.1124/jpet.108.15027619244548
    [Google Scholar]
  43. IshiharaT. TakahashiM. HigakiM. MizushimaY. MizushimaT. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents.Int. J. Pharm.20103851-217017510.1016/j.ijpharm.2009.10.02519837147
    [Google Scholar]
  44. DerendorfH. MöllmannH. GrünerA. HaackD. GyselbyG. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration.Clin. Pharmacol. Ther.198639331331710.1038/clpt.1986.453948470
    [Google Scholar]
  45. ButoescuN. SeemayerCA. FotiM. JordanO. DoelkerE. Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis.Biomaterials.200930917721780
    [Google Scholar]
  46. ButoescuN. SeemayerC.A. PalmerG. GuerneP.A. GabayC. DoelkerE. JordanO. Magnetically retainable microparticles for drug delivery to the joint: Efficacy studies in an antigen-induced arthritis model in mice.Arthritis Res. Ther.2009113R7210.1186/ar270119454011
    [Google Scholar]
  47. BongartzT. SuttonA.J. SweetingM.J. BuchanI. MattesonE.L. MontoriV. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials.JAMA2006295192275228510.1001/jama.295.19.227516705109
    [Google Scholar]
  48. PutnamD. Polymers for gene delivery across length scales.Nat. Mater.20065643945110.1038/nmat164516738681
    [Google Scholar]
  49. LundinK.E. SimonsonO.E. MorenoP.M.D. ZaghloulE.M. OpreaI.I. SvahnM.G. SmithC.I.E. Nanotechnology approaches for gene transfer.Genetica20091371475610.1007/s10709‑009‑9372‑019488829
    [Google Scholar]
  50. PathakA. PatnaikS. GuptaK.C. Recent trends in non-viral vector- mediated gene delivery.Biotechnol. J.20094111559157210.1002/biot.20090016119844918
    [Google Scholar]
  51. ParveenS. MisraR. SahooSK. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging.Nanomedicine.20178214716610.1201/b22358‑3
    [Google Scholar]
  52. SchiffelersR.M. XuJ. StormG. WoodleM.C. ScariaP.V. Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis.Arthritis Rheum.20055241314131810.1002/art.2097515818667
    [Google Scholar]
  53. KhouryM. Louis-PlenceP. EscriouV. NoelD. LargeauC. CantosC. SchermanD. JorgensenC. ApparaillyF. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor α in experimental arthritis.Arthritis Rheum.20065461867187710.1002/art.2187616729293
    [Google Scholar]
  54. KhouryM. EscriouV. CourtiesG. GalyA. YaoR. LargeauC. SchermanD. JorgensenC. ApparaillyF. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes.Arthritis Rheum.20085882356236710.1002/art.2366018668557
    [Google Scholar]
  55. DashP.R. ReadM.L. FisherK.D. HowardK.A. WolfertM. OupickyD. SubrV. StrohalmJ. UlbrichK. SeymourL.W. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin.J. Biol. Chem.200027563793380210.1074/jbc.275.6.379310660529
    [Google Scholar]
  56. HowardK. DashP.R. ReadM.L. WardK. TomkinsL.M. NazarovaO. UlbrichK. SeymourL.W. Influence of hydrophilicity of cationic polymers on the biophysical properties of polyelectrolyte complexes formed by self-assembly with DNA.Biochim. Biophys. Acta, Gen. Subj.20001475324525510.1016/S0304‑4165(00)00076‑310913823
    [Google Scholar]
  57. HowardK.A. PaludanS.R. BehlkeM.A. BesenbacherF. DeleuranB. KjemsJ. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model.Mol. Ther.200917116216810.1038/mt.2008.22018827803
    [Google Scholar]
  58. CourtiesG. BaronM. PresumeyJ. EscriouV. van LentP. SchermanD. CantagrelA. van den BergW.B. JorgensenC. ApparaillyF. DavignonJ.L. Cytosolic phospholipase A2α gene silencing in the myeloid lineage alters development of Th1 responses and reduces disease severity in collagen-induced arthritis.Arthritis Rheum.201163368169010.1002/art.3017421360497
    [Google Scholar]
  59. FernandesJ.C. WangH. JreyssatyC. BenderdourM. LavigneP. QiuX. WinnikF.M. ZhangX. DaiK. ShiQ. Bone-protective effects of nonviral gene therapy with folate-chitosan DNA nanoparticle containing interleukin-1 receptor antagonist gene in rats with adjuvant-induced arthritis.Mol. Ther.20081671243125110.1038/mt.2008.9918500247
    [Google Scholar]
  60. WittmannJ. JäckH.M. microRNAs in rheumatoid arthritis: midget RNAs with a giant impact.Ann. Rheum. Dis.201170Suppl. 1i92i9610.1136/ard.2010.14015221339228
    [Google Scholar]
  61. NagataY. NakasaT. MochizukiY. IshikawaM. MiyakiS. ShibuyaH. YamasakiK. AdachiN. AsaharaH. OchiM. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a.Arthritis Rheum.20096092677268310.1002/art.2476219714650
    [Google Scholar]
  62. CostaC. IncioJ. SoaresR. Angiogenesis and chronic inflammation: cause or consequence?Angiogenesis200710314916610.1007/s10456‑007‑9074‑017457680
    [Google Scholar]
  63. SzekaneczZ. BesenyeiT. SzentpéteryÁ. KochA.E. Angiogenesis and vasculogenesis in rheumatoid arthritis.Curr. Opin. Rheumatol.201022329930610.1097/BOR.0b013e328337c95a20305562
    [Google Scholar]
  64. ClavelG. ValvasonC. YamaokaK. LemeiterD. LarocheL. BoissierM.C. BessisN. Relationship between angiogenesis and inflammation in experimental arthritis.Eur. Cytokine Netw.200617320221017194641
    [Google Scholar]
  65. WestraJ. MolemaG. KallenbergC. Hypoxia-inducible factor-1 as regulator of angiogenesis in rheumatoid arthritis - therapeutic implications.Curr. Med. Chem.201017325426310.2174/09298671079014978320214567
    [Google Scholar]
  66. NagashimaM. WaukeK. HiranoD. IshigamiS. AonoH. TakaiM. SasanoM. YoshinoS. Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth factor in cultured synoviocytes and patients with rheumatoid arthritis.Rheumatology (Oxford)200039111255126210.1093/rheumatology/39.11.125511085806
    [Google Scholar]
  67. KlimiukP.A. SierakowskiS. DomysławskaI. FiedorczykM. ChwiećkoJ. Reduction of soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) and vascular endothelial growth factor levels in serum of rheumatoid arthritis patients following multiple intravenous infusions of infliximab.Arch. Immunol. Ther. Exp. (Warsz.)2004521364215053231
    [Google Scholar]
  68. MukherjeeP. BhattacharyaR. WangP. WangL. BasuS. NagyJ.A. AtalaA. MukhopadhyayD. SokerS. Antiangiogenic properties of gold nanoparticles.Clin. Cancer Res.20051193530353410.1158/1078‑0432.CCR‑04‑248215867256
    [Google Scholar]
  69. MerchantB. Gold, the noble metal and the paradoxes of its toxicology.Biologicals1998261495910.1006/biol.1997.01239637749
    [Google Scholar]
  70. TsaiC.Y. ShiauA.L. ChenS.Y. ChenY.H. ChengP.C. ChangM.Y. ChenD.H. ChouC.H. WangC.R. WuC.L. Amelioration of collagen-induced arthritis in rats by nanogold.Arthritis Rheum.200756254455410.1002/art.2240117265489
    [Google Scholar]
  71. JacksonJ.K. HigoT. HunterW.L. BurtH.M. Topoisomerase inhibitors as anti-arthritic agents.Inflamm. Res.200857312613410.1007/s00011‑007‑7163‑618301866
    [Google Scholar]
  72. KooO.M.Y. RubinsteinI. ÖnyükselH. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis.Pharm. Res.201128477678710.1007/s11095‑010‑0330‑421132352
    [Google Scholar]
  73. Lainer-CarrD. BrahnE. Angiogenesis inhibition as a therapeutic approach for inflammatory synovitis.Nat. Clin. Pract. Rheumatol.20073843444210.1038/ncprheum055917664950
    [Google Scholar]
  74. ZhouH. ChanH.W. WicklineS.A. LanzaG.M. PhamC.T.N. αv β3 –Targeted nanotherapy suppresses inflammatory arthritis in mice.FASEB J.20092392978298510.1096/fj.09‑12987419376816
    [Google Scholar]
  75. ZhouH. HuG. WicklineS.A. LanzaG.M. PhamC.T.N. Synergistic effect of antiangiogenic nanotherapy combined with methotrexate in the treatment of experimental inflammatory arthritis.Nanomedicine2010571065107410.2217/nnm.10.7820874021
    [Google Scholar]
  76. AlbaniS. KoffemanE.C. PrakkenB. Induction of immune tolerance in the treatment of rheumatoid arthritis.Nat. Rev. Rheumatol.20117527228110.1038/nrrheum.2011.3621468144
    [Google Scholar]
  77. KremerJ.M. WesthovensR. LeonM. Di GiorgioE. AltenR. SteinfeldS. RussellA. DougadosM. EmeryP. NuamahI.F. WilliamsG.R. BeckerJ.C. HagertyD.T. MorelandL.W. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig.N. Engl. J. Med.2003349201907191510.1056/NEJMoa03507514614165
    [Google Scholar]
  78. KimW.U. LeeW.K. RyooJ.W. KimS.H. KimJ. YounJ. MinS.Y. BaeE.Y. HwangS.Y. ParkS.H. ChoC.S. ParkJ.S. KimH.Y. Suppression of collagen-induced arthritis by single administration of poly(lactic-co-glycolic acid) nanoparticles entrapping type II collagen: A novel treatment strategy for induction of oral tolerance.Arthritis Rheum.20024641109112010.1002/art.1019811953991
    [Google Scholar]
  79. LeeW. ParkJ. JungS. YangC.W. KimW.U. KimH.Y. ParkJ.H. ParkJ. Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction.J. Control. Release20051051-2778810.1016/j.jconrel.2005.03.00915919128
    [Google Scholar]
  80. PockleyA.G. Heat shock proteins in health and disease: Therapeutic targets or therapeutic agents?Expert Rev. Mol. Med.200132312110.1017/S146239940100355614585147
    [Google Scholar]
  81. BamboroughP. MorseM.A. RayK.P. Targeting IKKβ for the treatment of rheumatoid arthritis.Drug News Perspect.201023848349010.1358/dnp.2010.23.8.144784421031164
    [Google Scholar]
  82. CohenS. FleischmannR. Kinase inhibitors: A new approach to rheumatoid arthritis treatment.Curr. Opin. Rheumatol.201022333033510.1097/BOR.0b013e3283378e6f20164774
    [Google Scholar]
  83. van der MeelR. VehmeijerL.J.C. KokR.J. StormG. van GaalE.V.B. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status.Adv. Drug Deliv. Rev.201365101284129810.1016/j.addr.2013.08.01224018362
    [Google Scholar]
  84. IwaszkiewiczK.S. HuaS. Development of an effective topical liposomal formulation for localized analgesia and anti-inflammatory actions in the Complete Freund’s Adjuvant rodent model of acute inflammatory pain.Pain Physician2014176E719E73525415787
    [Google Scholar]
  85. TrifM. GuillenC. VaughanD.M. TelferJ.M. BrewerJ.M. RoseanuA. BrockJ.H. Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases.Exp. Biol. Med.2001226655956410.1177/15353702012260060811395926
    [Google Scholar]
  86. RajeraR. NagpalK. SinghS.K. MishraD.N. Niosomes: A controlled and novel drug delivery system.Biol. Pharm. Bull.201134794595310.1248/bpb.34.94521719996
    [Google Scholar]
  87. JamalM. ImamS.S. AqilM. AmirM. MirS.R. MujeebM. Transdermal potential and anti-arthritic efficacy of ursolic acid from niosomal gel systems.Int. Immunopharmacol.201529236136910.1016/j.intimp.2015.10.02926545446
    [Google Scholar]
  88. AbidinL. MujeebM. ImamS.S. AqilM. KhuranaD. Enhanced transdermal delivery of luteolin via non-ionic surfactant-based vesicle: quality evaluation and anti-arthritic assessment.Drug Deliv.20162331069107410.3109/10717544.2014.94513025116512
    [Google Scholar]
  89. AbdulbaqiI.M. DarwisY. KhanN.A. AssiR.A. KhanA.A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S10501627307730
    [Google Scholar]
  90. Kumar SarwaK. RudrapalM. MazumderB. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats.Drug Deliv.20152281043105210.3109/10717544.2013.86104124506573
    [Google Scholar]
  91. FanC. LiX. ZhouY. ZhaoY. MaS. LiW. LiuY. LiG. Enhanced topical delivery of tetrandrine by ethosomes for treatment of arthritis.BioMed Res. Int.2013201311310.1155/2013/16194324062995
    [Google Scholar]
  92. ChenJ. LuW.L. GuW. LuS.S. ChenZ.P. CaiB.C. Skin permeation behavior of elastic liposomes: Role of formulation ingredients.Expert Opin. Drug Deliv.201310684585610.1517/17425247.2013.77925223550630
    [Google Scholar]
  93. GuptaA. AggarwalG. SinglaS. AroraR. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation.Sci. Pharm.20128041061108010.3797/scipharm.1208‑0223264950
    [Google Scholar]
  94. Preeti KumarM.S. Development of celecoxibtransfersomal gel for the treatment of rheumatoid arthritis.Indian J. Pharmaceut. Biolog. Res.201422071310.30750/ijpbr.2.2.2
    [Google Scholar]
  95. MelloS.B.V. TavaresE.R. GuidoM.C. BonfáE. MaranhãoR.C. Anti-inflammatory effects of intravenous methotrexate associated with lipid nanoemulsions on antigen-induced arthritis.Clinics2016711545810.6061/clinics/2016(01)0926872084
    [Google Scholar]
  96. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J. Drug Target.2012201081383010.3109/1061186X.2012.71684522931500
    [Google Scholar]
  97. LiQ. CaiT. HuangY. XiaX. ColeS. CaiY. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs.Nanomaterials20177612210.3390/nano706012228554993
    [Google Scholar]
  98. AroraR. KuhadA. KaurI.P. ChopraK. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats.Eur. J. Pain201519794095210.1002/ejp.62025400173
    [Google Scholar]
  99. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑712460720
    [Google Scholar]
  100. ZierauK. HöhneD. MoréS.D. Pharmaceutical compositions comprising dendritic nanocarriers and cannabis active agents.EP4134073A1, 2023.
  101. ChenQ. ChenY. YuH. EhrlichM.G. Nanocarriers and their processing for diagnostics and therapeutics.CA2942518C, 2022.
  102. SahuK.K. ShrivastavaS. SinghD. SinghM.R. Enzyme loaded navigated nanomatrix systems to the inflamed synovial locus for the treatment of rheumatoid arthritis.AU2021106679A4, 2021.
  103. FuW YangR YanL LiJ Leonurine-loaded nano composite hydrogel, preparation method and application.CN117379365B, 2024.
  104. ScottE.A. AmeerG.A. BurkeJ.A. AllenS.D. YiS. Poly(ethylene glycol)-block-poly(propylene sulfide) nanocarrier platform for enhanced efficacy of immunosuppressive agents.US20230263729A1, 2023.
  105. VonA.H. FarokhzadO.C. LangerR.S. JuntT. MosemanE.A. ZhangL. BastoP. IannaconeM. AlexisF. Vaccine nanotechnology.US11547667B2, 2023.
  106. JohnstonL. KishimotoT.K. SandsE. CautreelsW. Formulations and doses of pegylated uricase.US20210187081A1, 2021.
  107. TaeG. KwonI. KimM. KimS. KwonK. JungS. Drug delivery system comprising nanocarrier loaded with urate oxidase and metal-based nanoparticle capable of degrading hydrogen peroxide and pharmaceutical composition comprising the same.US20200315980A1, 2020
  108. LamKS LuoJ Nanocarriers for drug delivery.EP2344134B1, 2017.
  109. KaufmanR.C. Lipid nanoparticle compositions and methods as carriers of cannabinoids in standardized precision-metered dosage forms.AU2019201792B2, 2020.
  110. AlbuquerqueJ. MouraC. SarmentoB. ReisS. Solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics.Molecules2015206111031111810.3390/molecules20061110326087258
    [Google Scholar]
  111. XueM. JiangZ. WuT. LiJ. ZhangL. ZhaoY. LiX. ZhangL.Y. YangS. Anti-inflammatory effects and hepatotoxicity of Tripterygium-loaded solid lipid nanoparticles on adjuvant-induced arthritis in rats.Phytomedicine20121911998100610.1016/j.phymed.2012.06.00622884304
    [Google Scholar]
/content/journals/crr/10.2174/0115733971315944240712101011
Loading
/content/journals/crr/10.2174/0115733971315944240712101011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test