Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Background

The purpose of this study was to determine the association between single nucleotide polymorphisms (SNPs) at the rs4331, rs4341, and rs4351 loci of the angiotensin- converting enzyme (ACE) gene and genetic susceptibility to systemic lupus erythematosus (SLE) in the Hainan population.

Methods

This study involved a total of 428 participants, with 214 individuals diagnosed with SLE and an equal number of healthy controls. The SNaPshot sequencing technique was used to determine the base sequences at the ACE gene rs4331, rs4341, and rs4351 loci in the study subjects. Logistic regression was employed to compare the frequency distribution of genotypes and allele frequencies at each locus between the case group and the control group. HaploView 4.2 software was used to analyze the relationship between haplotypes at each locus and genetic susceptibility to SLE.

Results

The GG genotype and G allele frequency at the rs4341 locus were higher in the case group compared to the control group. In the rs4341 recessive model, carriers of the GG genotype were more likely to develop SLE compared to carriers of the CG+CC genotype (OR = 1.889, 95% CI: 1.195-2.988, = 0.006). In the rs4351 overdominant model, carriers of the AC genotype had an increased risk of developing SLE compared to carriers of the AA+CC genotype (OR = 1.514, 95% CI: 1.033-2.219, = 0.033). The rs4341 and rs4351 loci exhibited linkage disequilibrium, and the CA haplotype (OR = 0.630, 95% CI: 0.481-0.826, = 0.001) was a protective factor against SLE. The GA haplotype (OR = 2.849, 95% CI: 1.901-4.270, < 0.01) and the CC haplotype (OR = 2.309, 95% CI: 1.210-4.405, = 0.009) were risk factors for genetic susceptibility to SLE in the Hainan population.

Conclusion

The rs4341 locus of the ACE gene is associated with genetic susceptibility to SLE in the Hainan population.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971304742240531080936
2024-06-14
2025-09-02
Loading full text...

Full text loading...

References

  1. JinX. XuQ. PuC. ZhuK. LuC. JiangY. XiaoL. HanY. LuL. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus.Cell. Mol. Immunol.20211881896190310.1038/s41423‑020‑0472‑132472023
    [Google Scholar]
  2. ReesF. DohertyM. GraingeM.J. LanyonP. ZhangW. The worldwide incidence and prevalence of systemic lupus erythematosus: A systematic review of epidemiological studies.Rheumatology201756111945196110.1093/rheumatology/kex26028968809
    [Google Scholar]
  3. ZhangS. SuJ. LiX. ZhangX. LiuS. WuL. MaL. BiL. ZuoX. SunL. HuangC. ZhaoJ. LiM. ZengX. CSTAR co-authors Chinese SLE Treatment and Research group (CSTAR) registry: V. gender impact on Chinese patients with systemic lupus erythematosus.Lupus201524121267127510.1177/096120331558581325972364
    [Google Scholar]
  4. CerveraR. DoriaA. AmouraZ. KhamashtaM. SchneiderM. GuilleminF. MaurelF. GarofanoA. RosetM. PernaA. MurrayM. SchmittC. BoucotI. Patterns of systemic lupus erythematosus expression in Europe.Autoimmun. Rev.201413662162910.1016/j.autrev.2013.11.00724418306
    [Google Scholar]
  5. NietoR. QuintanaR. Zavala-FloresE. SerranoR. RobertsK. CatoggioL.J. GarcíaM.A. BerbottoG.A. SauritV. BonfaE. BorbaE.F. Lavras CostallatL.T. Da SilvaN.A. SatoE.I. Tavares BrenolJ.C. MassardoL. NeiraO.J. VázquezG. Guibert ToledanoM. Pascual-RamosV. Sauza del PozoM.J. Barile-FabrisL.A. AmigoM.C. García De La TorreI. Acevedo-VásquezE.M. SegamiM.I. Chacón-DíazR. Esteva-SpinettiM.H. AlarcónG.S. Pons-EstelB.A. Pons-EstelG.J. Time to diagnosis in systemic lupus erythematosus: Associated factors and its impact on damage accrual and mortality. Data from a multi-ethnic, multinational Latin American lupus cohort.Lupus202433434034610.1177/0961203324123282138334100
    [Google Scholar]
  6. HeJ. ZhangR. ShaoM. ZhaoX. MiaoM. ChenJ. LiuJ. ZhangX. ZhangX. JinY. WangY. ZhangS. ZhuL. JacobA. JiaR. YouX. LiX. LiC. ZhouY. YangY. YeH. LiuY. SuY. ShenN. AlexanderJ. GuoJ. AmbrusJ. LinX. YuD. SunX. LiZ. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: A randomised, double-blind, placebo-controlled trial.Ann. Rheum. Dis.202079114114910.1136/annrheumdis‑2019‑21539631537547
    [Google Scholar]
  7. RaoD.A. AraziA. WofsyD. DiamondB. Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis.Nat. Rev. Nephrol.202016423825010.1038/s41581‑019‑0232‑631853010
    [Google Scholar]
  8. GeorgiouP.E. PolitiE.N. KatsimbriP. SakkaV. DrososA.A. Outcome of lupus pregnancy: A controlled study.Rheumatology20003991014101910.1093/rheumatology/39.9.101410986308
    [Google Scholar]
  9. WallaceD.J. StrandV. MerrillJ.T. PopaS. SpindlerA.J. EimonA. PetriM. SmolenJ.S. WajdulaJ. ChristensenJ. LiC. DiehlA. VincentM.S. BeebeJ. HealeyP. SridharanS. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: A phase II dose-ranging randomised controlled trial.Ann. Rheum. Dis.201776353454210.1136/annrheumdis‑2016‑20966827672124
    [Google Scholar]
  10. HurstC. SotoM. VinaE.R. RodgersK.E. Renin-angiotensin system-modifying antihypertensive drugs can reduce the risk of cardiovascular complications in lupus: A retrospective cohort study.Am. J. Med.20231363284293.e410.1016/j.amjmed.2022.11.01636495935
    [Google Scholar]
  11. SotoM. DelatorreN. HurstC. RodgersK.E. Targeting the protective arm of the renin-angiotensin system to reduce systemic lupus erythematosus related pathologies in MRL-lpr mice.Front. Immunol.202011157210.3389/fimmu.2020.0157232793221
    [Google Scholar]
  12. ParsaA. LovettD.H. PedenE.A. ZhuL. SeldinM.F. CriswellL.A. Renin–angiotensin system gene polymorphisms predict the progression to renal insufficiency among Asians with lupus nephritis.Genes Immun.20056321722410.1038/sj.gene.636417915789057
    [Google Scholar]
  13. FanX. MaX. MaimaitiyimingR. AihaitiA. YangJ. LiX. WangX. PangG. LiuX. QiuC. AbraR. WangL. Study on the preparation process of quinoa anti-hypertensive peptide and its stability.Front. Nutr.20239111904210.3389/fnut.2022.111904236742006
    [Google Scholar]
  14. HuttonE.R. VakocC.R. SiepelA. ACE: A probabilistic model for characterizing gene-level essentiality in CRISPR screens.Genome Biol.202122127810.1186/s13059‑021‑02491‑z34556174
    [Google Scholar]
  15. PrietoM.C. González-VillalobosR.A. BotrosF.T. MartinV.L. PagánJ. SatouR. LaraL.S. FengY. FernandesF.B. KoboriH. CasariniD.E. NavarL.G. Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1–7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats.Am. J. Physiol. Renal Physiol.20113003F749F75510.1152/ajprenal.00383.200921209009
    [Google Scholar]
  16. BernardiS. ToffoliB. ZennaroC. TikellisC. MonticoneS. LosurdoP. BelliniG. ThomasM.C. FalloF. VeglioF. JohnstonC.I. FabrisB. High-salt diet increases glomerular ACE/ACE2 ratio leading to oxidative stress and kidney damage.Nephrol. Dial. Transplant.20122751793180010.1093/ndt/gfr60022036945
    [Google Scholar]
  17. Gonzalez-VillalobosR.A. SatouR. OhashiN. Semprun-PrietoL.C. KatsuradaA. KimC. UpchurchG.M. PrietoM.C. KoboriH. NavarL.G. Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition.Am. J. Physiol. Renal Physiol.20102981F150F15710.1152/ajprenal.00477.200919846570
    [Google Scholar]
  18. WangZ. WangS. ZhaoJ. YuC. HuY. TuY. YangZ. ZhengJ. WangY. GaoY. Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of renin-angiotensin system components in rats.Int. J. Med. Sci.201916564465310.7150/ijms.3107531217731
    [Google Scholar]
  19. LiuL.P. ZhangX.L. LiJ. New perspectives on angiotensin-converting enzyme 2 and its related diseases.World J. Diabetes202112683985410.4239/wjd.v12.i6.83934168732
    [Google Scholar]
  20. NavarLG Translational studies on augmentation of intratubular renin-angiotensin system in hypertension.Kidney Int. Suppl.201334321325
    [Google Scholar]
  21. FerrarioC.M. VonCannonJ. AhmadS. WrightK.N. RobertsD.J. WangH. YamashitaT. GrobanL. ChengC.P. CollawnJ.F. Dell’ItaliaL.J. VaragicJ. Activation of the human angiotensin-(1-12)-chymase pathway in rats with human angiotensinogen gene transcripts.Front. Cardiovasc. Med.2019616310.3389/fcvm.2019.0016331803758
    [Google Scholar]
  22. Al-HazzaniA. DaoudM.S. AtayaF.S. Renin–angiotensin system gene polymorphisms among Saudi patients with coronary artery disease.J. Biol. Res. (Thessalon.)2014211810.1186/2241‑5793‑21‑825984491
    [Google Scholar]
  23. HeQ. FanC. YuM. WallarG. ZhangZ.F. WangL. ZhangX. HuR. Correction: Associations of ACE gene insertion/deletion polymorphism, ACE activity, and ACE mRNA expression with hypertension in a chinese population.PLoS One2016115e015656410.1371/journal.pone.015656427218462
    [Google Scholar]
  24. GurleyS.B. Riquier-BrisonA.D.M. SchnermannJ. SparksM.A. AllenA.M. HaaseV.H. SnouwaertJ.N. LeT.H. McDonoughA.A. KollerB.H. CoffmanT.M. AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure.Cell Metab.201113446947510.1016/j.cmet.2011.03.00121459331
    [Google Scholar]
  25. XuJ. WangY. PanF. StankovichJ. YeD. LianL. ZhangK. DingC. Association of ACE gene polymorphism with genetic susceptibility to systemic lupus erythematosus in a Chinese population: A family-based association study.J. Rheumatol.200734122408241117937470
    [Google Scholar]
  26. AbbasD. EzzatY. HamdyE. GamilM. Angiotensin-converting enzyme (ACE) serum levels and gene polymorphism in Egyptian patients with systemic lupus erythematosus.Lupus201221110311010.1177/096120331141826821976404
    [Google Scholar]
  27. LeeY.H. RhoY.H. ChoiS.J. JiJ.D. SongG.G. Angiotensin-converting enzyme insertion/deletion polymorphism and systemic lupus erythematosus: A metaanalysis.J. Rheumatol.200633469870216583472
    [Google Scholar]
  28. AndresonR PuurandT RemmM. SNPmasker: Automatic masking of SNPs and repeats across eukaryotic genomes.Nucleic Acids Res.200634W651W65510.1093/nar/gkl125
    [Google Scholar]
  29. KosmaraD. PapanikolaouS. NikolaouC. BertsiasG. Extensive alternative splicing patterns in systemic lupus erythematosus highlight sexual differences.Cells20231223267810.3390/cells1223267838067106
    [Google Scholar]
  30. RamosP.S. CriswellL.A. MoserK.L. ComeauM.E. WilliamsA.H. PajewskiN.M. ChungS.A. GrahamR.R. ZidovetzkiR. KellyJ.A. KaufmanK.M. JacobC.O. VyseT.J. TsaoB.P. KimberlyR.P. GaffneyP.M. Alarcón-RiquelmeM.E. HarleyJ.B. LangefeldC.D. International Consortium on the Genetics of Systemic Erythematosus A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap.PLoS Genet.2011712e100240610.1371/journal.pgen.100240622174698
    [Google Scholar]
  31. YuP. ZhuQ. ChenC. FuX. LiY. LiuL. LuoQ. WangF. WangY. Association between major histocompatibility complex class i chain-related gene polymorphisms and susceptibility of systemic lupus erythematosus.Am. J. Med. Sci.2017354443043510.1016/j.amjms.2017.06.00329078849
    [Google Scholar]
  32. JonesS.A. CantsilierisS. FanH. ChengQ. RussB.E. TuckerE.J. HarrisJ. RudloffI. NoldM. NorthcottM. DankersW. TohA.E.J. WhiteS.J. MorandE.F. Rare variants in non-coding regulatory regions of the genome that affect gene expression in systemic lupus erythematosus.Sci. Rep.2019911543310.1038/s41598‑019‑51864‑931659207
    [Google Scholar]
  33. SunC. MolinerosJ.E. LoogerL.L. ZhouX. KimK. OkadaY. MaJ. QiY. Kim-HowardX. MotghareP. BhattaraiK. AdlerA. BangS.Y. LeeH.S. KimT.H. KangY.M. SuhC.H. ChungW.T. ParkY.B. ChoeJ.Y. ShimS.C. KochiY. SuzukiA. KuboM. SumidaT. YamamotoK. LeeS.S. KimY.J. HanB.G. DozmorovM. KaufmanK.M. WrenJ.D. HarleyJ.B. ShenN. ChuaK.H. ZhangH. BaeS.C. NathS.K. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry.Nat. Genet.201648332333010.1038/ng.349626808113
    [Google Scholar]
  34. ZhangJ. ZhangL. ZhangY. YangJ. GuoM. SunL. PanH.F. HirankarnN. YingD. ZengS. LeeT.L. LauC.S. ChanT.M. LeungA.M.H. MokC.C. WongS.N. LeeK.W. HoM.H.K. LeeP.P.W. ChungB.H.Y. ChongC.Y. WongR.W.S. MokM.Y. WongW.H.S. TongK.L. TseN.K.C. LiX.P. AvihingsanonY. RianthavornP. DeekajorndejT. SuphapeetipornK. ShotelersukV. YingS.K.Y. FungS.K.S. LaiW.M. Garcia-BarcelóM.M. ChernyS.S. ShamP.C. CuiY. YangS. YeD.Q. ZhangX.J. LauY.L. YangW. Gene-based meta-analysis of genome-wide association study data identifies independent single-nucleotide polymorphisms in ANXA6 as being associated with systemic lupus erythematosus in Asian populations.Arthritis Rheumatol.201567112966297710.1002/art.3927526202167
    [Google Scholar]
  35. DanY.L. ZhaoC.N. MaoY.M. WuQ. HeY.S. HuY.Q. XiangK. YangX.K. SamN.B. WuG.C. PanH.F. Association of PER2 gene single nucleotide polymorphisms with genetic susceptibility to systemic lupus erythematosus.Lupus202130573474010.1177/096120332198979433497301
    [Google Scholar]
  36. LiuL.N. WangP. ZouY.F. XuZ. ChengJ. ZhangY. HuW. PanH.F. Semaphorin-3A, semaphorin-7A gene single nucleotide polymorphisms, and systemic lupus erythematosus susceptibility.Autoimmunity201952416116710.1080/08916934.2019.164233331394943
    [Google Scholar]
  37. FanouriakisA. KostopoulouM. AlunnoA. AringerM. BajemaI. BoletisJ.N. CerveraR. DoriaA. GordonC. GovoniM. HoussiauF. JayneD. KouloumasM. KuhnA. LarsenJ.L. LerstrømK. MoroniG. MoscaM. SchneiderM. SmolenJ.S. SvenungssonE. TesarV. TincaniA. TroldborgA. van VollenhovenR. WenzelJ. BertsiasG. BoumpasD.T. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus.Ann. Rheum. Dis.201978673674510.1136/annrheumdis‑2019‑21508930926722
    [Google Scholar]
  38. WangF K DengH YangL Correlation between ERCC1 gene polymorphism and risk of coal workers' pneumoconiosis.Available from: https://www.oriprobe.com/journals/xdyfyx.html
  39. HuoP. ZhangD. GuanX. MeiY. ZhengH. FengX. Association between genetic polymorphisms of ACE & eNOS and diabetic nephropathy.Mol. Biol. Rep.2015421273310.1007/s11033‑014‑3736‑y25227524
    [Google Scholar]
  40. Al-MukayniziF.B. AlKhurijiA. BabayZ. AddarM. AlDaihanS. AlanaziM. WarsyA.S. Lack of association between angiotensin converting enzyme I/D polymorphism and unexplained recurrent miscarriage in Saudi Arabia.J. Med. Biochem.201635216617410.1515/jomb‑2015‑002028356877
    [Google Scholar]
  41. ZhangM. WangJ. WangY. WuS. SandfordA.J. LuoJ. HeJ.Q. Association of the TLR1 variant rs5743557 with susceptibility to tuberculosis.J. Thorac. Dis.201911258359410.21037/jtd.2019.01.7430963003
    [Google Scholar]
  42. ZhengG. ZhangW. XuJ. YuanA. LiQ. GastwirthJ.L. Genetic risks and genetic model specification.J. Theor. Biol.2016403687410.1016/j.jtbi.2016.05.01627181372
    [Google Scholar]
  43. PahlR. SchäferH. PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing.Bioinformatics201026172093210010.1093/bioinformatics/btq39920605926
    [Google Scholar]
  44. SunL. GanJ. JiangL. WuR. Recursive test of hardy-weinberg equilibrium in tetraploids.Trends Genet.202137650451310.1016/j.tig.2020.11.00633341281
    [Google Scholar]
  45. ZhangJ. ZhuQ. MengF. LeiH. ZhaoY. Association study of TLR-9 polymorphisms and systemic lupus erythematosus in Northern Chinese Han population.Gene2014533138538810.1016/j.gene.2013.08.05124004541
    [Google Scholar]
  46. ChenY.F. XuJ.H. ZouY.F. LianL. WangF. ChenS.Y. CaiJ. LiM. Association of glucocorticoid receptor gene polymorphisms with systemic lupus erythematosus in a Chinese population.Int. J. Rheum. Dis.201720122053206110.1111/1756‑185X.1319128984075
    [Google Scholar]
  47. JakesR.W. BaeS.C. LouthrenooW. MokC.C. NavarraS.V. KwonN. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: Prevalence, incidence, clinical features, and mortality.Arthritis Care Res. (Hoboken)201264215916810.1002/acr.2068322052624
    [Google Scholar]
  48. KhunsriraksakulC. LiQ. MarkusH. PatrickM.T. SauteraudR. McGuireD. WangX. WangC. WangL. ChenS. ShenoyG. LiB. ZhongX. OlsenN.J. CarrelL. TsoiL.C. JiangB. LiuD.J. Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus.Nat. Commun.202314166810.1038/s41467‑023‑36306‑536750564
    [Google Scholar]
  49. WebberA. HiroseR. VincentiF. Novel strategies in immunosuppression: Issues in perspective.Transplantation201191101057106410.1097/TP.0b013e318214530621412186
    [Google Scholar]
  50. FillatreauS. ManfroiB. DörnerT. Toll-like receptor signalling in B cells during systemic lupus erythematosus.Nat. Rev. Rheumatol.20211729810810.1038/s41584‑020‑00544‑433339987
    [Google Scholar]
  51. YaeghmaieR. Ghafouri-FardS. NorooziR. TavakoliF. TaheriM. AyatollahiS.A. Polymorphisms in the angiotensin I converting enzyme (ACE) gene are associated with multiple sclerosis risk and response to Interferon-β treatment.Int. Immunopharmacol.20186427527910.1016/j.intimp.2018.09.01430218954
    [Google Scholar]
  52. RashedL. Abdel HayR. MahmoudR. HasanN. ZahraA. FayezS. Association of angiotensin-converting enzyme (ACE) gene polymorphism with inflammation and cellular cytotoxicity in vitiligo patients.PLoS One2015107e013291510.1371/journal.pone.013291526177100
    [Google Scholar]
  53. WangN. LiX. ZhangQ. ZhangH. ZhouL. WuN. JinM. QiuC. ZhangK. Association of angiotensin-converting enzyme gene polymorphism with pulse pressure and its interaction with obesity status in Heilongjiang province.Clin. Exp. Hypertens.2019411707410.1080/10641963.2018.144574929546999
    [Google Scholar]
  54. GlennK.L. DuZ.Q. EisenmannJ.C. RothschildM.F. An alternative method for genotyping of the ACE I/D polymorphism.Mol. Biol. Rep.20093661305131010.1007/s11033‑008‑9313‑518622756
    [Google Scholar]
  55. SoósB. FagyasM. HorváthÁ. VéghE. PusztaiA. CzókolyováM. CsongrádiA. HamarA. PethőZ. BodnárN. KerekesG. HodosiK. SzekaneczÉ. SzamosiS. SzántóS. SzűcsG. PappZ. SzekaneczZ. Angiotensin converting enzyme activity in anti-TNF-Treated Rheumatoid Arthritis and Ankylosing Spondylitis Patients.Front. Med. (Lausanne)2022878574410.3389/fmed.2021.78574435155468
    [Google Scholar]
  56. YapD.Y.H. ChanT.M. Lupus nephritis in Asia: Clinical features and management.Kidney Dis.20151210010910.1159/00043045827536670
    [Google Scholar]
  57. iguezM. MatuteP.P. BlancoV. ACE gene variants rise the risk of severe COVID-19 in patients with hypertension, dyslipidemia or diabetes. A pilot study.Front. endocrinol.202112688071
    [Google Scholar]
  58. KranzhöferR. SchmidtJ. PfeifferC.A.H. HaglS. LibbyP. KüblerW. Angiotensin induces inflammatory activation of human vascular smooth muscle cells.Arterioscler. Thromb. Vasc. Biol.19991971623162910.1161/01.ATV.19.7.162310397679
    [Google Scholar]
  59. Ghodke-PuranikY. NiewoldT.B. Immunogenetics of systemic lupus erythematosus: A comprehensive review.J. Autoimmun.20156412513610.1016/j.jaut.2015.08.00426324017
    [Google Scholar]
  60. BrasierA.R. RecinosA.III EledrisiM.S. Vascular inflammation and the renin-angiotensin system.Arterioscler. Thromb. Vasc. Biol.20022281257126610.1161/01.ATV.0000021412.56621.A212171785
    [Google Scholar]
  61. LoY. TsaiT.F. Angiotensin converting enzyme and angiotensin converting enzyme inhibitors in dermatology: A narrative review.Expert Rev. Clin. Pharmacol.2022151334210.1080/17512433.2022.204595035196189
    [Google Scholar]
  62. RigatB. HubertC. Alhenc-GelasF. CambienF. CorvolP. SoubrierF. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels.J. Clin. Invest.19908641343134610.1172/JCI1148441976655
    [Google Scholar]
  63. LovrečićL. RistićS. Starčević-ČizmarevićN. JazbecS.Š. SepčićJ. KapovićM. PeterlinB. Angiotensin-converting enzyme I/D gene polymorphism and risk of multiple sclerosis.Acta Neurol. Scand.2006114637437710.1111/j.1600‑0404.2006.00711.x17083336
    [Google Scholar]
  64. ŽivkovićM. KolakovićA. StojkovićL. DinčićE. KostićS. AlavantićD. StankovićA. Renin-angiotensin system gene polymorphisms as risk factors for multiple sclerosis.J. Neurol. Sci.2016363293210.1016/j.jns.2016.02.02627000216
    [Google Scholar]
  65. ShiraiT. HiroseS. Preface and Overview: Genetics of SLE; A sine qua non for identification.Int. Rev. Immunol.2000194-528929510.3109/0883018000905550011016420
    [Google Scholar]
  66. KianiA. Elieh-Ali-KomiD. BahrehmandF. MostafaeiS. Vaisi-RayganiA. BaniamerianH. AghazF. TanhapourM. ShakibaE. RahimiZ. PourmotabbedT. Association of angiotensin-converting enzyme (ACE) I/D variation with biochemical parameters and oxidative stress markers in systemic lupus erythematosus patients in west of Iran.Mol. Biol. Rep.202350108201821210.1007/s11033‑023‑08685‑x37561325
    [Google Scholar]
  67. HammadA. YahiaS. LaimonW. HamedS.M. ShoumaA. ShalabyN.M. Abdel-HadyD. GhanemR. El-FarahatyR.M. El-BassionyS.R. HammadE.M. Angiotensin-converting enzyme insertion/deletion gene polymorphism in Egyptian children with systemic lupus erythematosus: a possible relation to proliferative nephritis.Lupus201726776276710.1177/096120331668209627956582
    [Google Scholar]
  68. HuangA.F. LiH. KeL. YangC. LiuX.Y. YangZ.C. XuF. JiaH. XuW.D. Association of angiotensin-converting enzyme insertion/deletion polymorphism with susceptibility to systemic lupus erythematosus: A meta-analysis.Int. J. Rheum. Dis.201821244745710.1111/1756‑185X.1323629205894
    [Google Scholar]
  69. WuH. ZhaoM. TanL. LuQ. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation.Autoimmun. Rev.201615768468910.1016/j.autrev.2016.03.00226970492
    [Google Scholar]
  70. PengQ. JiangS. ChenJ. MaC. HuoD. ShaoY. ZhangJ. Unique microbial diversity and metabolic pathway features of fermented vegetables from Hainan, China.Front. Microbiol.2018939910.3389/fmicb.2018.0039929559966
    [Google Scholar]
  71. ChungS.A. BrownE.E. WilliamsA.H. RamosP.S. BerthierC.C. BhangaleT. Alarcon-RiquelmeM.E. BehrensT.W. CriswellL.A. GrahamD.C. DemirciF.Y. EdbergJ.C. GaffneyP.M. HarleyJ.B. JacobC.O. KambohM.I. KellyJ.A. ManziS. Moser-SivilsK.L. RussellL.P. PetriM. TsaoB.P. VyseT.J. ZidovetzkiR. KretzlerM. KimberlyR.P. FreedmanB.I. GrahamR.R. LangefeldC.D. International Consortium for Systemic Lupus Erythematosus Genetics Lupus nephritis susceptibility loci in women with systemic lupus erythematosus.J. Am. Soc. Nephrol.201425122859287010.1681/ASN.201305044624925725
    [Google Scholar]
  72. RienhoffH.Y.Jr Genomewide association studies and assessment of risk of disease.N. Engl. J. Med.201036321207721083405
    [Google Scholar]
  73. NusbaumJ.S. MirzaI. ShumJ. FreilichR.W. CohenR.E. PillingerM.H. IzmirlyP.M. BuyonJ.P. Sex differences in systemic lupus erythematosus.Mayo Clin. Proc.202095238439410.1016/j.mayocp.2019.09.01232029091
    [Google Scholar]
  74. HanlyJ.G. O’KeeffeA.G. SuL. UrowitzM.B. Romero-DiazJ. GordonC. BaeS.C. BernatskyS. ClarkeA.E. WallaceD.J. MerrillJ.T. IsenbergD.A. RahmanA. GinzlerE.M. FortinP. GladmanD.D. Sanchez-GuerreroJ. PetriM. BruceI.N. DooleyM.A. Ramsey-GoldmanR. AranowC. AlarcónG.S. FesslerB.J. SteinssonK. NivedO. SturfeltG.K. ManziS. KhamashtaM.A. van VollenhovenR.F. ZomaA.A. Ramos-CasalsM. Ruiz-IrastorzaG. LimS.S. StollT. InancM. KalunianK.C. KamenD.L. MaddisonP. PeschkenC.A. JacobsenS. AskanaseA. TheriaultC. ThompsonK. FarewellV. The frequency and outcome of lupus nephritis: Results from an international inception cohort study.Rheumatology201655225226210.1093/rheumatology/kev31126342222
    [Google Scholar]
  75. GongA. LiX. WangY. YanH. XuZ. FengZ. XieY. YinD. YangS. Association study of ACE polymorphisms and systemic lupus erythematosus in Northern Chinese Han population.Mol. Biol. Rep.201239109485949110.1007/s11033‑012‑1813‑722729880
    [Google Scholar]
/content/journals/crr/10.2174/0115733971304742240531080936
Loading
/content/journals/crr/10.2174/0115733971304742240531080936
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test