Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Gout is a common form of inflammatory arthritis characterized by the deposition of MSU in the joints and surrounding tissues, which results in inflammation and recurrent painful attacks. Currently, xanthine oxidase inhibitors, , Allopurinol and Febuxostat, are used in the therapy. Recently, nanoparticles (NPs) containing metal oxides and non-metal oxides have also been developed to better manage gout. This comprehensive review summarizes the pathophysiology of gout, currently used drugs in the treatment, followed by emerging therapies for gout.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971302054240627072809
2024-07-22
2025-10-23
Loading full text...

Full text loading...

References

  1. DalbethN. GoslingA.L. GaffoA. AbhishekA. Gout.Lancet2021397102871843185510.1016/S0140‑6736(21)00569‑933798500
    [Google Scholar]
  2. TerkeltaubR. Gout in 2006: The perfect storm.Bull. NYU Hosp. Jt. Dis.2006641-2828617121496
    [Google Scholar]
  3. PuigJ.G. MartínezM.A. Hyperuricemia, gout and the metabolic syndrome.Curr. Opin. Rheumatol.200820218719110.1097/BOR.0b013e3282f4b1ed18349749
    [Google Scholar]
  4. AbbottR.D. BrandF.N. KannelW.B. CastelliW.P. Gout and coronary heart disease: The framingham study.J. Clin. Epidemiol.198841323724210.1016/0895‑4356(88)90127‑83339376
    [Google Scholar]
  5. De VeraM.A. RahmanM.M. BholeV. KopecJ.A. ChoiH.K. Independent impact of gout on the risk of acute myocardial infarction among elderly women: A population-based study.Ann. Rheum. Dis.20106961162116410.1136/ard.2009.12277020124358
    [Google Scholar]
  6. KrishnanE. BakerJ.F. FurstD.E. SchumacherH.R. Gout and the risk of acute myocardial infarction.Arthritis Rheum.20065482688269610.1002/art.2201416871533
    [Google Scholar]
  7. CronsteinB.N. TerkeltaubR. The inflammatory process of gout and its treatment.Arthritis Res. Ther.20068Suppl 1S310.1186/ar190816820042
    [Google Scholar]
  8. KuoC.F. GraingeM.J. ZhangW. DohertyM. Global epidemiology of gout: Prevalence, incidence and risk factors.Nat. Rev. Rheumatol.2015111164966210.1038/nrrheum.2015.9126150127
    [Google Scholar]
  9. RymalE. RizzoloD. Gout: A comprehensive review.JAAPA2014279263110.1097/01.JAA.0000453233.24754.ec25102078
    [Google Scholar]
  10. JamnikJ. RehmanS. MejiaBS. de SouzaR.J. KhanT.A. LeiterL.A. WoleverT.M.S. KendallC.W.C. JenkinsD.J.A. SievenpiperJ.L. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies.BMJ Open2016610e01319110.1136/bmjopen‑2016‑01319127697882
    [Google Scholar]
  11. Ben SalemC. SlimR. FathallahN. HmoudaH. Drug-induced hyperuricaemia and gout.Rheumatology201756567968827498351
    [Google Scholar]
  12. KuoC.F. SeeL.C. LuoS.F. KoY.S. LinY.S. HwangJ.S. LinC.M. ChenH.W. YuK.H. Gout: An independent risk factor for all-cause and cardiovascular mortality.Rheumatology201049114114610.1093/rheumatology/kep36419933595
    [Google Scholar]
  13. KawaiT. OhishiM. TakeyaY. OnishiM. ItoN. YamamotoK. KamideK. RakugiH. Serum uric acid is an independent risk factor for cardiovascular disease and mortality in hypertensive patients.Hypertens. Res.201235111087109210.1038/hr.2012.9922739421
    [Google Scholar]
  14. Rahimi-SakakF. MaroofiM. RahmaniJ. BellissimoN. HekmatdoostA. Serum uric acid and risk of cardiovascular mortality: A systematic review and dose-response meta-analysis of cohort studies of over a million participants.BMC Cardiovasc. Disord.201919121810.1186/s12872‑019‑1215‑z31615412
    [Google Scholar]
  15. TerkeltaubR. Update on gout: New therapeutic strategies and options.Nat. Rev. Rheumatol.201061303810.1038/nrrheum.2009.23620046204
    [Google Scholar]
  16. ButlerF. AlghubayshiA. RomanY. The epidemiology and genetics of hyperuricemia and gout across major racial groups: A literature review and population genetics secondary database analysis.J. Pers. Med.202111323110.3390/jpm1103023133810064
    [Google Scholar]
  17. DehlinM. JacobssonL. RoddyE. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors.Nat. Rev. Rheumatol.202016738039010.1038/s41584‑020‑0441‑132541923
    [Google Scholar]
  18. Chen-XuM. YokoseC. RaiS.K. PillingerM.H. ChoiH.K. Contemporary prevalence of gout and hyperuricemia in the united states and decadal trends: The national health and nutrition examination survey, 2007–2016.Arthritis Rheumatol.201971699199910.1002/art.4080730618180
    [Google Scholar]
  19. ChoiH.K. MountD.B. ReginatoA.M. Pathogenesis of gout.Ann. Intern. Med.2005143749951610.7326/0003‑4819‑143‑7‑200510040‑0000916204163
    [Google Scholar]
  20. TowiwatP. ChhanaA. DalbethN. The anatomical pathology of gout: A systematic literature review.BMC Musculoskelet. Disord.201920114010.1186/s12891‑019‑2519‑y30935368
    [Google Scholar]
  21. MartinonF. PétrilliV. MayorA. TardivelA. TschoppJ. Gout-associated uric acid crystals activate the NALP3 inflammasome.Nature2006440708123724110.1038/nature0451616407889
    [Google Scholar]
  22. DalbethN. HaskardD.O. Mechanisms of inflammation in gout.Rheumatology20054491090109610.1093/rheumatology/keh64015956094
    [Google Scholar]
  23. YagnikD.R. HillyerP. MarshallD. SmytheC.D.W. KrauszT. HaskardD.O. LandisR.C. Noninflammatory phagocytosis of monosodium urate monohydrate crystals by mouse macrophages: Implications for the control of joint inflammation in gout.Arthritis Rheum.20004381779178910.1002/1529‑0131(200008)43:8<1779::AID‑ANR14>3.0.CO;2‑210943868
    [Google Scholar]
  24. DuanL. ZhongJ. YangY. ZhuX. Editorial: Advances in pathogenesis and therapies of gout.Front. Immunol.202213890204
    [Google Scholar]
  25. SoA.K. MartinonF. Inflammation in gout: Mechanisms and therapeutic targets.Nat. Rev. Rheumatol.2017131163964710.1038/nrrheum.2017.15528959043
    [Google Scholar]
  26. DalbethN. LauterioT.J. WolfeH.R. Mechanism of action of colchicine in the treatment of gout.Clin. Ther.201436101465147910.1016/j.clinthera.2014.07.01725151572
    [Google Scholar]
  27. Available from: https://www.spandidos-publications.com/10.3892/ijmm 2015
  28. AkiraS. TakedaK. Toll-like receptor signalling.Nat. Rev. Immunol.20044749951110.1038/nri139115229469
    [Google Scholar]
  29. BeutlerB. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases.Immunol. Rev.2009227124826310.1111/j.1600‑065X.2008.00733.x19120489
    [Google Scholar]
  30. DinarelloC.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases.Blood2011117143720373210.1182/blood‑2010‑07‑27341721304099
    [Google Scholar]
  31. KimS.K. The mechanism of the NLRP3 inflammasome activation and pathogenic implication in the pathogenesis of gout.J. Rheum. Dis.202229314015310.4078/jrd.2022.29.3.14037475970
    [Google Scholar]
  32. GalozziP. BindoliS. DoriaA. OlivieroF. SfrisoP. Autoinflammatory features in gouty arthritis.J. Clin. Med.2021109188010.3390/jcm1009188033926105
    [Google Scholar]
  33. WebMDWhich medicines treat Gout?2024Available From: https://www.webmd.com/arthritis/understanding-gout-treatment
  34. QurieA. PreussC.V. MusaR. Allopurinol.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  35. Drug BankFebuxostat.2023Available From: https://go.drugbank.com/drugs/DB04854
  36. SilvermanW. LocoveiS. DahlG. Probenecid, a gout remedy, inhibits pannexin 1 channels.Am. J. Physiol. Cell Physiol.20082953C761C76710.1152/ajpcell.00227.200818596212
    [Google Scholar]
  37. PaddaI.S. BhattR. ParmarM. Pegloticase.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  38. GhlichlooI. GerrietsV. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs).Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  39. Drug BankPrednisolone.2024Available From: https://go.drugbank.com/drugs/DB00860
  40. KostićD.A. DimitrijevićD.S. StojanovićG.S. PalićI.R. ĐorđevićA.S. IckovskiJ.D. Xanthine oxidase: Isolation, assays of activity, and inhibition.J. Chem.201520151810.1155/2015/294858
    [Google Scholar]
  41. PacherP. NivorozhkinA. SzabóC. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol.Pharmacol. Rev.20065818711410.1124/pr.58.1.616507884
    [Google Scholar]
  42. BoveM. CiceroA.F.G. VeronesiM. BorghiC. An evidence-based review on urate-lowering treatments: Implications for optimal treatment of chronic hyperuricemia.Vasc. Health Risk Manag.201713232810.2147/VHRM.S11508028223818
    [Google Scholar]
  43. VarricaC. CarvalheiroM. Faria-SilvaC. EleutérioC. SandriG. SimõesS. Topical allopurinol-loaded nanostructured lipid carriers: A novel approach for wound healing management.Bioengineering202181219210.3390/bioengineering812019234940345
    [Google Scholar]
  44. TakanoY. Hase-AokiK. HoriuchiH. ZhaoL. KasaharaY. KondoS. BeckerM.A. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase.Life Sci.200576161835184710.1016/j.lfs.2004.10.03115698861
    [Google Scholar]
  45. BeckerM.A. Febuxostat compared with allopurinol in patients with hyperuricemia and gout.N Engl J Med2005353232245061
    [Google Scholar]
  46. BishtM. Febuxostat: A novel agent for management of hyperuricemia in gout.Indian J Pharmaceut Sci2011736597600
    [Google Scholar]
  47. MAB. Clinical gout and the pathogenesis of hyperuricemia.Arthritis Allied Cond.20052005230339
    [Google Scholar]
  48. MøllerJ.V. The tubular site of urate transport in the rabbit kidney, and the effect of probenecid on urate secretion.Acta Pharmacol. Toxicol.196523432933610.1111/j.1600‑0773.1965.tb00358.x5899691
    [Google Scholar]
  49. GutmanA.B. Some recent advances in the study of uric acid metabolism and gout.Bull. N. Y. Acad. Med.195127314416414812253
    [Google Scholar]
  50. BritannicaProbenecid drug.2023Available From: https://www.britannica.com/science/probenecid
  51. WebMDProbenecid - uses, side effects, and more .2023Available From: https://www.webmd.com/drugs/2/drug-8697/probenecid-oral/details
  52. RichetteP. DohertyM. PascualE. BarskovaV. BecceF. Castañeda-SanabriaJ. CoyfishM. GuilloS. JansenT.L. JanssensH. LiotéF. MallenC. NukiG. Perez-RuizF. PimentaoJ. PunziL. PywellT. SoA. TauscheA.K. UhligT. ZavadaJ. ZhangW. TubachF. BardinT. 2016 updated EULAR evidence-based recommendations for the management of gout.Ann. Rheum. Dis.2017761294210.1136/annrheumdis‑2016‑20970727457514
    [Google Scholar]
  53. National Library of MedicineLiverTox: Clinical and Research Information on Drug-Induced Liver Injury.BethesdaNational Institute of Diabetes and Digestive and Kidney Diseases2012
    [Google Scholar]
  54. Mengle-GawL. HubbardR.C. KarimA. YuS. TalwalkerS. IsaksonP. A study of the platelet effects of SC-58635, a novel COX-2 selective inhibitor.Arthritis Rheum.199740Suppl. 9S93
    [Google Scholar]
  55. SutariaS. KatbamnaR. UnderwoodM. Effectiveness of interventions for the treatment of acute and prevention of recurrent gout—a systematic review.Rheumatology200645111422143110.1093/rheumatology/kel07116632483
    [Google Scholar]
  56. ThekenK.N. Variability in analgesic response to non-steroidal anti-inflammatory drugs.Prostaglandins Other Lipid Mediat.2018139637010.1016/j.prostaglandins.2018.10.00530393163
    [Google Scholar]
  57. JackmanR.W. RhoadsM.G. CornwellE. KandarianS.C. Microtubule-mediated NF-κB activation in the TNF-α signaling pathway.Exp. Cell Res.2009315193242324910.1016/j.yexcr.2009.08.02019732770
    [Google Scholar]
  58. KuijpersTW RaleighM KavanaghT JanssenH CalafatJ RoosD Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape. A tubulin-driven process.J Immunol Baltim Md19941521050609
    [Google Scholar]
  59. PaschkeS. WeidnerA.F. PaustT. MartiO. BeilM. Ben-ChetritE. Technical advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments.J. Leukoc. Biol.20139451091109610.1189/jlb.101251023901122
    [Google Scholar]
  60. CronsteinB.N. MoladY. ReibmanJ. BalakhaneE. LevinR.I. WeissmannG. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils.J. Clin. Invest.1995962994100210.1172/JCI1181477543498
    [Google Scholar]
  61. MisawaT. TakahamaM. KozakiT. LeeH. ZouJ. SaitohT. AkiraS. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome.Nat. Immunol.201314545446010.1038/ni.255023502856
    [Google Scholar]
  62. U.S. PharmacistTreatment options for gout.2023Available From: https://www.uspharmacist.com/article/treatment-options-for-gout
  63. EmmersonB.T. The management of gout.N. Engl. J. Med.1996334744545110.1056/NEJM1996021533407078552148
    [Google Scholar]
  64. PaulB.J. Gout: An Asia-Pacific update.Int J Rheum Dis2017204407416
    [Google Scholar]
  65. PaulB.J. The role of IL-1 in gout: From bench to bedside.Rheumatology201857suppl_1i12i19
    [Google Scholar]
  66. JamesR. PaulB.J. New and emerging therapies in gout.Rheumatol. Autoimmun.202332707710.1002/rai2.12064
    [Google Scholar]
  67. EdwardsN.L. Emerging therapies for gout.Rheum Dis Clin North Am2014403237587
    [Google Scholar]
  68. MarchettiC. SwartzwelterB. GamboniF. NeffC.P. RichterK. AzamT. CartaS. TengesdalI. NemkovT. D’AlessandroA. HenryC. JonesG.S. GoodrichS.A. St LaurentJ.P. JonesT.M. ScribnerC.L. BarrowR.B. AltmanR.D. SkourasD.B. GattornoM. GrauV. JanciauskieneS. RubartelliA. JoostenL.A.B. DinarelloC.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation.Proc. Natl. Acad. Sci. USA20181157E1530E153910.1073/pnas.171609511529378952
    [Google Scholar]
  69. KlückV. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial.Lancet Rheumatol202025e270e280
    [Google Scholar]
  70. JoostanL.A.B. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra.Ann Rheum Dis20167561219e280
    [Google Scholar]
  71. SattuiS.E. Treatment of hyperuricemia in gout: current therapeutic options, latest developments and clinical implications.Ther Adv Musculoskelet Dis.201684145159
    [Google Scholar]
  72. ShahidH. Investigational drugs for hyperuricemia.Expert Opin Investig Drugs2015248101330
    [Google Scholar]
  73. BarafH.S.B. LB0002 safety & efficacy of sel-212 in patients with gout refractory to coventional treatment: Outcomes from two randomized, double blind, placebo-controlled, multicenter phase III studies.BMJ2015821200.2
    [Google Scholar]
  74. DalbethN. Lesinurad, a selective uric acid reabsorption inhibitor, in combination with febuxostat in patients with tophaceous gout: Findings of a phase III clinical trial.Arthritis Rheumatol.20176991903
    [Google Scholar]
  75. HosoyaT. SanoT. SasakiT. FushimiM. OhashiT. Dotinurad versus benzbromarone in Japanese hyperuricemic patient with or without gout: a randomized, double-blind, parallel-group, phase 3 study.Clin. Exp. Nephrol.202024Suppl. 1627010.1007/s10157‑020‑01849‑031980978
    [Google Scholar]
  76. DaviesM.J. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus.Diabetes Obes Metab.2015174426
    [Google Scholar]
  77. PascartT. RichetteP. Investigational drugs for hyperuricemia, an update on recent developments.Expert Opin. Investig. Drugs201827543744410.1080/13543784.2018.147113329718730
    [Google Scholar]
  78. DaviesM.J. Tuna extract reduces serum uric acid in gout-free subjects with insignificantly high serum uric acid: A randomized controlled trial.Biomed Rep. 201652254
    [Google Scholar]
  79. DaoussisD. BogdanosD.P. DimitroulasT. SakkasL. AndonopoulosA.P. Adrenocorticotropic hormone: An effective “natural” biologic therapy for acute gout?Rheumatol. Int.202040121941194710.1007/s00296‑020‑04659‑532715340
    [Google Scholar]
  80. DaoussisD ACTH as a treatment for acute crystal-induced arthritis: update on clinical evidence and mechanisms of action.Semin Arthritis Rheum2014435648
    [Google Scholar]
  81. ChoiY Effect of fenofibrate on uric acid level in patients with gout.Sci. Rep.2018835175
    [Google Scholar]
  82. LeeY.H. LeeC.H. LeeJ. Effect of fenofibrate in combination with urate lowering agents in patients with gout.Korean J. Intern. Med.2006212899310.3904/kjim.2006.21.2.8916913436
    [Google Scholar]
  83. NakashimaM. UematsuT. KosugeK. KanamaruM. Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects.Eur. J. Clin. Pharmacol.199242333333510.1007/BF002663581577054
    [Google Scholar]
  84. ShahinfarS Safety of losartan in hypertensive patients with thiazide-induced hyperuricemia.Kidney Int19995651879
    [Google Scholar]
  85. ChanardJ Amlodipine reduces cyclosporin-induced hyperuricaemia in hypertensive renal transplant recipients.Nephrol Dial Transplant200318102147
    [Google Scholar]
  86. MilionisH.J. Effects of statin treatment on uric acid homeostasis in patients with primary hyperlipidemia.Am Heart J20041484402147
    [Google Scholar]
  87. ZhuR. NiuY. ZhouW. WangS. MaoJ. GuoY. LeiY. XiongX. LiY. GuoL. Effect of nanoparticles on gouty arthritis: A systematic review and meta-analysis.BMC Musculoskelet. Disord.202324112410.1186/s12891‑023‑06186‑336788552
    [Google Scholar]
  88. Najahi-MissaouiW. Safe nanoparticles: Are we there yet?Int. J. Mol. Sci.2021221385
    [Google Scholar]
  89. De JongW.H. Drug delivery and nanoparticles: Applications and hazards.Int J Nanomedicine200832133
    [Google Scholar]
  90. KiyaniM.M. Evaluation of antioxidant activity and histopathological changes occurred by the oral ingestion of CuO nanoparticles in monosodium urate crystal-induced hyperuricemic BALB/c mice. Biol Trace Elem Res20222001217
    [Google Scholar]
  91. KiyaniM.M. Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice.J Trace Elem Med Biol201956169
    [Google Scholar]
  92. ChenY. Superparamagnetic iron oxide nanoparticles protect human gingival fibroblasts from Porphyromonas gingivalis invasion and inflammatory stimulation.Int J Nanomedicine20221745
    [Google Scholar]
  93. ChenY. Evaluation of turmeric nanoparticles as anti-gout agent: Modernization of a traditional drug.Medicina2019551711045
    [Google Scholar]
  94. WangS. ZhangY. KongH. ZhangM. ChengJ. WangX. LuF. QuH. ZhaoY. Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots.Nanomedicine201914222925293910.2217/nnm‑2019‑025531418646
    [Google Scholar]
  95. RahmiE.P. KumolosasiE. JalilJ. HusainK. BuangF. Anti-hyperuricemic and anti-inflammatory effects of Marantodes pumilumas potential treatment for gout.Front. Pharmacol.20201100289
    [Google Scholar]
  96. XieH. Puerarin alleviates vincristine-induced neuropathic pain and neuroinflammation via inhibition of nuclear factor-κB and activation of the TGF-β/Smad pathway in rats.Int Immunopharmacol202089Pt B107060
    [Google Scholar]
  97. LiuY. ZhuH. ZhouW. YeQ. Anti-inflammatory and anti-gouty-arthritic effect of free Ginsenoside Rb1 and nano Ginsenoside Rb1 against MSU induced gouty arthritis in experimental animals.Chem. Biol. Interact.202033210928510.1016/j.cbi.2020.10928533038330
    [Google Scholar]
  98. ZhangJ. SunY. QuQ. LiB. ZhangL. GuR. ZuoJ. WeiW. MaC. LiuL. LiuK. LiJ. ZhangH. Engineering non-covalently assembled protein nanoparticles for long-acting gouty arthritis therapy.J. Mater. Chem. B Mater. Biol. Med.20219489923993110.1039/D1TB01760H34842263
    [Google Scholar]
  99. HaoY. LiH. CaoY. ChenY. LeiM. ZhangT. XiaoY. ChuB. QianZ. Uricase and horseradish peroxidase hybrid CaHPO4 nanoflower integrated with transcutaneous patches for treatment of hyperuricemia.J. Biomed. Nanotechnol.201915595196510.1166/jbn.2019.275230890227
    [Google Scholar]
/content/journals/crr/10.2174/0115733971302054240627072809
Loading
/content/journals/crr/10.2174/0115733971302054240627072809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test