Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Strong oxidant, curcumin, is diferuloyl methane; a member of the class of phenols known as curcuminoids that give Indian medicinal plants their characteristic turmeric-yellow hue. Over 5000 years ago, curcumin was first employed in the traditional Indian medical system. A growing amount of investigation reveals that curcumin has several pharmacological characteristics, including anticancer, hepatoprotective, anti-inflammatory, antioxidant, and antibacterial properties. Clinical tests revealed no harm, but some participants did have moderate nausea or diarrhea. A degenerative joint condition known as osteoarthritis affects elderly populations all over the world. It has a chronic inflammatory etiology, which contributes to chondrocyte loss that results in a thinner surface of cartilage at the affected joints. Curcumin has been scientifically demonstrated to exhibit medicinal benefits for osteoarthritis (OA), and further research is being conducted on the numerous ways through which it suppresses inflammation and slows the progression of ailments. Clinical and preclinical studies suggest the potential efficacy of curcumin in managing osteoarthritis, warranting further investigation. With emphasis on the mechanisms associated, this review seeks to completely outline the clinical effectiveness of curcumin using data from a variety of scientific studies that have been published so far.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971308639240529124155
2024-06-13
2025-09-01
Loading full text...

Full text loading...

References

  1. GorganiL. MohammadiM. NajafpourG.D. NikzadM. Piperine-the bioactive compound of black pepper: From isolation to medicinal formulations.Compr. Rev. Food Sci. Food Saf.201716112414010.1111/1541‑4337.1224633371546
    [Google Scholar]
  2. Indira PriyadarsiniK. Chemical and structural features influencing the biological activity of curcumin.Curr. Pharm. Des.201319112093210010.2174/13816121380528922823116315
    [Google Scholar]
  3. DengT. XuJ. WangQ. WangX. JiaoY. CaoX. GengQ. ZhangM. ZhaoL. XiaoC. Immunomodulatory effects of curcumin on macrophage polarization in rheumatoid arthritis.Front. Pharmacol.202415136933710.3389/fphar.2024.136933738487171
    [Google Scholar]
  4. KothaR.R. LuthriaD.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects.Molecules20192416293010.3390/molecules2416293031412624
    [Google Scholar]
  5. GuptaS.C. PrasadS. KimJ.H. PatchvaS. WebbL.J. PriyadarsiniI.K. AggarwalB.B. Multitargeting by curcumin as revealed by molecular interaction studies.Nat. Prod. Rep.201128121937195510.1039/c1np00051a21979811
    [Google Scholar]
  6. BalasubramanianK. Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease.J. Agric. Food Chem.200654103512352010.1021/jf060353319127718
    [Google Scholar]
  7. AggarwalB. DebL. PrasadS. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses.Molecules201420118520510.3390/molecules2001018525547723
    [Google Scholar]
  8. MengZ.W. ChangB. SangL.X. Use of curcumin and its nanopreparations in the treatment of inflammatory bowel disease.World J. Gastroenterol.202430328028210.3748/wjg.v30.i3.28038314128
    [Google Scholar]
  9. KharatM. DuZ. ZhangG. McClementsD.J. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment.J. Agric. Food Chem.20176581525153210.1021/acs.jafc.6b0481527935709
    [Google Scholar]
  10. BorettiA. Curcumin-based fixed dose combination products for cholesterol management: A narrative review.ACS Pharmacol. Transl. Sci.20247230030810.1021/acsptsci.3c0023438357288
    [Google Scholar]
  11. FaranakG. Anticancer properties of curcumin-treated Lactobacillus plantarum against the HT-29 colorectal adenocarcinoma cells.Sci Rep2023131286010.1038/s41598‑023‑29462‑7
    [Google Scholar]
  12. ParkW. AminA.R.M.R. ChenZ.G. ShinD.M. New perspectives of curcumin in cancer prevention.Cancer Prev. Res. (Phila.)20136538740010.1158/1940‑6207.CAPR‑12‑041023466484
    [Google Scholar]
  13. Bertoncini-SilvaC. VladA. RicciarelliR. FassiniG.P. SuenV.M.M. ZinggJ.M. Enhancing the bioavailability and bioactivity of curcumin for disease prevention and treatment.Antioxidants202413333110.3390/antiox1303033138539864
    [Google Scholar]
  14. PopovićV. FarhatE. BanjariI. KadićA. PuljakL. Bioavailability of oral curcumin in systematic reviews: A methodological study.Pharmaceuticals202417216416410.3390/ph1702016438399379
    [Google Scholar]
  15. ZhuY. SunP. DuanC. CaoY. KongB. WangH. ChenQ. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion.Food Res. Int.2023174Pt 111363411363410.1016/j.foodres.2023.11363437986538
    [Google Scholar]
  16. ZhangY. Rauf KhanA. FuM. ZhaiY. JiJ. BobrovskayaL. ZhaiG. Advances in curcumin-loaded nanopreparations: Improving bioavailability and overcoming inherent drawbacks.J. Drug Target.201927991793110.1080/1061186X.2019.157215830672353
    [Google Scholar]
  17. BadmaevV. MajeedM. PrakashL. Piperine derived from black pepper increases the plasma levels of coenzyme q10 following oral supplementation.J. Nutr. Biochem.200011210911310.1016/S0955‑2863(99)00074‑110715596
    [Google Scholar]
  18. TanS.L.J. BillaN. Improved bioavailability of poorly soluble drugs through gastrointestinal muco-adhesion of lipid nanoparticles.Pharmaceutics20211311181710.3390/pharmaceutics1311181734834232
    [Google Scholar]
  19. HegdeM. GirisaS. ChettyB. VishwaR. KunnumakkaraA.B. Curcumin formulations for better bioavailability: What we learned from clinical trials thus far?ACS Omega2023812107131074610.1021/acsomega.2c0732637008131
    [Google Scholar]
  20. ZhaoJ. LiangG. ZhouG. HongK. YangW. LiuJ. ZengL. Efficacy and safety of curcumin therapy for knee osteoarthritis: A Bayesian network meta-analysis.J. Ethnopharmacol.202432111749310.1016/j.jep.2023.11749338036015
    [Google Scholar]
  21. MahmoudianA. LohmanderL.S. JafariH. LuytenF.P. Towards classification criteria for early-stage knee osteoarthritis: A population-based study to enrich for progressors.Semin. Arthritis Rheum.202151128529110.1016/j.semarthrit.2020.11.00233433364
    [Google Scholar]
  22. YucesoyB. CharlesL.E. BakerB. BurchfielC.M. Occupational and genetic risk factors for osteoarthritis: A review.Work201550226127310.3233/WOR‑13173924004806
    [Google Scholar]
  23. CrossM. SmithE. HoyD. NolteS. AckermanI. FransenM. BridgettL. WilliamsS. GuilleminF. HillC.L. LaslettL.L. JonesG. CicuttiniF. OsborneR. VosT. BuchbinderR. WoolfA. MarchL. The global burden of hip and knee osteoarthritis: Estimates from the Global Burden of Disease 2010 study.Ann. Rheum. Dis.20147371323133010.1136/annrheumdis‑2013‑20476324553908
    [Google Scholar]
  24. HosseinB. A warning machine learning algorithm for early knee osteoarthritis structural progressor patient screening.Sage Journals2021131759720X2199325410.1177/1759720X21993254
    [Google Scholar]
  25. KandasamyG. AlmaghaslahD. AlmanasefM. AlmeleebiaT. VasudevanR. SiddiquaA. ShorogE. M AlshahraniA. PrabaharK. VeeramaniV.P. AmirthalingamP. F AlqifariS. ManiV. Viswanath ReddyL.K. An evaluation of knee osteoarthritis pain in the general community-Asir region, Saudi Arabia.PLoS One2024191e0296313e029631310.1371/journal.pone.029631338206937
    [Google Scholar]
  26. van de LaarM. PergolizziJ.V.Jr MellinghoffH-U. MerchanteI.M. NalamachuS. O’BrienJ. PerrotS. RaffaR.B. Pain treatment in arthritis-related pain: Beyond NSAIDs.Open Rheumatol. J.20126132033010.2174/187431290120601032023264838
    [Google Scholar]
  27. PhilpottH.L. NandurkarS. LubelJ. GibsonP.R. Drug-induced gastrointestinal disorders.Frontline Gastroenterol.201451495710.1136/flgastro‑2013‑10031628839751
    [Google Scholar]
  28. AmjadW. QureshiW. FarooqA. SohailU. KhatoonS. PervaizS. NarraP. HasanS.M. AliF. UllahA. GuttmannS. Gastrointestinal side effects of antiarrhythmic medications: A review of current literature.Cureus201799e164610.7759/cureus.164629142794
    [Google Scholar]
  29. SteinhausM.E. ChristA.B. CrossM.B. Total knee arthroplasty for knee osteoarthritis: Support for a foregone conclusion?HSS J.201713220721010.1007/s11420‑017‑9558‑428690473
    [Google Scholar]
  30. PellegrinoM. BevacquaE. FrattaruoloL. CappelloA.R. AquaroS. TucciP. Enhancing the anticancer and anti-inflammatory properties of curcumin in combination with quercetin, for the prevention and treatment of prostate cancer.Biomedicines20231172023202310.3390/biomedicines1107202337509660
    [Google Scholar]
  31. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑823143785
    [Google Scholar]
  32. PrasadS. GuptaS.C. TyagiA.K. AggarwalB.B. Curcumin, a component of golden spice: From bedside to bench and back.Biotechnol. Adv.20143261053106410.1016/j.biotechadv.2014.04.00424793420
    [Google Scholar]
  33. KunnumakkaraA.B. BordoloiD. PadmavathiG. MonishaJ. RoyN.K. PrasadS. AggarwalB.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases.Br. J. Pharmacol.2017174111325134810.1111/bph.1362127638428
    [Google Scholar]
  34. LeeW.H. LooC.Y. BebawyM. LukF. MasonR. RohanizadehR. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century.Curr. Neuropharmacol.201311433837810.2174/1570159X1131104000224381528
    [Google Scholar]
  35. SinghS. AggarwalB.B. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane).J. Biol. Chem.1995270503023510.1016/S0021‑9258(17)45855‑8
    [Google Scholar]
  36. KatsoriA.M. PalaganiA. BougarneN. Hadjipavlou-LitinaD. HaegemanG. Vanden BergheW. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue.Molecules201520186387810.3390/molecules2001086325580684
    [Google Scholar]
  37. Abd. WahabN.A. H. Lajis, N.; Abas, F.; Othman, I.; Naidu, R. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer.Nutrients202012367910.3390/nu1203067932131560
    [Google Scholar]
  38. FuX. YangM. CaoM. LiD. YangX. SunJ. ZhangZ. MaoL. ZhangS. WangF. ZhangF. FanC. SunB. Strategy to suppress oxidative damage-induced neurotoxicity in PC12 cells by curcumin: The role of ROS-mediated DNA damage and the MAPK and AKT pathways.Mol. Neurobiol.201653136937810.1007/s12035‑014‑9021‑125432891
    [Google Scholar]
  39. WuJ. LiQ. WangX. YuS. LiL. WuX. ChenY. ZhaoJ. ZhaoY. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway.PLoS One201383e5984310.1371/journal.pone.005984323555802
    [Google Scholar]
  40. CuiQ. LiX. ZhuH. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.Mol. Med. Rep.20161321381138810.3892/mmr.2015.465726648392
    [Google Scholar]
  41. TanvirE.M. HossenM.S. HossainM.F. AfrozR. GanS.H. KhalilM.I. KarimN. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh.J. Food Qual.201720171810.1155/2017/8471785
    [Google Scholar]
  42. UroševićM. NikolićL. GajićI. NikolićV. DinićA. MiljkovićV. Curcumin: biological activities and modern pharmaceutical forms.Antibiotics202211213510.3390/antibiotics1102013535203738
    [Google Scholar]
  43. ChangW.A. ChenC.M. SheuC.C. LiaoS.H. HsuY.L. TsaiM.J. KuoP.L. The potential effects of curcumin on pulmonary fibroblasts of idiopathic pulmonary fibrosis (IPF)—approaching with next-generation sequencing and bioinformatics.Molecules20202522545810.3390/molecules2522545833233354
    [Google Scholar]
  44. DailyJ.W. YangM. ParkS. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials.J. Med. Food201619871772910.1089/jmf.2016.370527533649
    [Google Scholar]
  45. PerkinsK. SahyW. BeckettR.D. Efficacy of curcuma for treatment of osteoarthritis.J. Evid. Based Complementary Altern. Med.201722115616510.1177/215658721663674726976085
    [Google Scholar]
  46. ZhangZ. LeongD.J. XuL. HeZ. WangA. NavatiM. KimS.J. HirshD.M. HardinJ.A. CobelliN.J. FriedmanJ.M. SunH.B. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model.Arthritis Res. Ther.201618112810.1186/s13075‑016‑1025‑y27260322
    [Google Scholar]
  47. ComblainF. SanchezC. LesponneI. BalligandM. SerisierS. HenrotinY. Curcuminoids extract, hydrolyzed collagen and green tea extract synergically inhibit inflammatory and catabolic mediator’s synthesis by normal bovine and osteoarthritic human chondrocytes in monolayer.PLoS One2015103e012165410.1371/journal.pone.012165425799427
    [Google Scholar]
  48. CsakiC. MobasheriA. ShakibaeiM. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: Inhibition of IL-1β-induced NF-κB-mediated inflammation and apoptosis.Arthritis Res. Ther.2009116R16510.1186/ar285019889203
    [Google Scholar]
  49. Schulze-TanzilG. MobasheriA. SendzikJ. JohnT. ShakibaeiM. Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1β-stimulated chondrocytes.Ann. N. Y. Acad. Sci.20041030157858610.1196/annals.1329.06715659840
    [Google Scholar]
  50. HenrotinY. ClutterbuckA.L. AllawayD. LodwigE.M. HarrisP. Mathy-HartertM. ShakibaeiM. MobasheriA. Biological actions of curcumin on articular chondrocytes.Osteoarthritis Cartilage201018214114910.1016/j.joca.2009.10.00219836480
    [Google Scholar]
  51. ShakibaeiM. MobasheriA. BuhrmannC. Curcumin synergizes with resveratrol to stimulate the MAPK signaling pathway in human articular chondrocytes in vitro.Genes Nutr.20116217117910.1007/s12263‑010‑0179‑521484156
    [Google Scholar]
  52. ShakibaeiM. Schulze-TanzilG. JohnT. MobasheriA. Curcumin protects human chondrocytes from IL-1β-induced inhibition of collagen type II and β1-integrin expression and activation of caspase-3: An immunomorphological study.Ann. Anat.20051875-648749710.1016/j.aanat.2005.06.00716320828
    [Google Scholar]
  53. WangP. YeY. YuanW. TanY. ZhangS. MengQ. Curcumin exerts a protective effect on murine knee chondrocytes treated with IL-1β through blocking the NF-κB/HIF-2α signaling pathway.Ann. Transl. Med.202191194010.21037/atm‑21‑270134350255
    [Google Scholar]
  54. JacobA. WuR. ZhouM. WangP. Mechanism of the anti-inflammatory effect of curcumin: PPAR- γ activation.PPAR Res.200720071510.1155/2007/8936918274631
    [Google Scholar]
  55. LiX. FengK. LiJ. YuD. FanQ. TangT. YaoX. WangX. Curcumin inhibits apoptosis of chondrocytes through activation ERK1/2 signaling pathways induced autophagy.Nutrients20179441410.3390/nu904041428430129
    [Google Scholar]
  56. ChinK.Y. The spice for joint inflammation: Anti-inflammatory role of curcumin in treating osteoarthritis.Drug Des. Devel. Ther.2016103029304210.2147/DDDT.S11743227703331
    [Google Scholar]
  57. Lev-AriS. StrierL. KazanovD. ElkayamO. LichtenbergD. CaspiD. ArberN. Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells.Rheumatology (Oxford)200645217117710.1093/rheumatology/kei13216249246
    [Google Scholar]
  58. AckermanI.N. BuchbinderR. MarchL. Global burden of disease study 2019: An opportunity to understand the growing prevalence and impact of hip, knee, hand and other osteoarthritis in Australia.Intern. Med. J.2023531018758210.1111/imj.1593336114616
    [Google Scholar]
  59. ComblainF. DubucJ.E. LambertC. SanchezC. LesponneI. SerisierS. HenrotinY. Identification of targets of a new nutritional mixture for osteoarthritis management composed by curcuminoids extract, hydrolyzed collagen and green tea extract.PLoS One2016116e015690210.1371/journal.pone.015690227275599
    [Google Scholar]
  60. BuhrmannC. BrockmuellerA. MuellerA.L. ShayanP. ShakibaeiM. Curcumin attenuates environment-derived osteoarthritis by Sox9/NF-κB signaling axis.Int. J. Mol. Sci.20212214764510.3390/ijms2214764534299264
    [Google Scholar]
  61. Delft, V; Leonie; Tas, S. W. The contribution of NF-KB signalling to immune regulation and tolerance.Eur. J. Clin. Invest.201545552953910.1111/eci.12430
    [Google Scholar]
  62. LiuJ. FengL. ZhuM. WangR.S. ZhangM. HuS. JiaX. WuJ.J. The in vitro protective effects of curcumin and demethoxycurcumin in Curcuma longa extract on advanced glycation end products-induced mesangial cell apoptosis and oxidative stress.Planta Med.201278161757176010.1055/s‑0032‑131525722923199
    [Google Scholar]
  63. VareedS.K. KakaralaM. RuffinM.T. CrowellJ.A. NormolleD.P. DjuricZ. BrennerD.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects.Cancer Epidemiol. Biomarkers Prev.20081761411141710.1158/1055‑9965.EPI‑07‑269318559556
    [Google Scholar]
  64. VerronE. KhairounI. GuicheuxJ. BoulerJ.M. Calcium phosphate biomaterials as bone drug delivery systems: A review.Drug Discov. Today20101513-1454755210.1016/j.drudis.2010.05.00320546919
    [Google Scholar]
  65. GinebraM.P. TraykovaT. PlanellJ.A. Calcium phosphate cements: Competitive drug carriers for the musculoskeletal system?Biomaterials200627102171217710.1016/j.biomaterials.2005.11.02316332349
    [Google Scholar]
  66. MohantyC. SahooS.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation.Biomaterials201031256597661110.1016/j.biomaterials.2010.04.06220553984
    [Google Scholar]
  67. DuanJ. ZhangY. HanS. ChenY. LiB. LiaoM. ChenW. DengX. ZhaoJ. HuangB. Synthesis and in vitro/in vivo anti- cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles.Int. J. Pharm.20104001-221122010.1016/j.ijpharm.2010.08.03320813175
    [Google Scholar]
  68. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.00528417091
    [Google Scholar]
  69. RaczL.Z. RaczC.P. PopL.C. TomoaiaG. MocanuA. BarbuI. SárköziM. RomanI. AvramA. Tomoaia-CotiselM. TomaV.A. Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of curcumin.Molecules20222720685410.3390/molecules2720685436296447
    [Google Scholar]
  70. MirzaeiH. ShakeriA. RashidiB. JaliliA. BanikazemiZ. SahebkarA. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies.Biomed. Pharmacother.20178510211210.1016/j.biopha.2016.11.098
    [Google Scholar]
  71. HussainZ. ThuH.E. NgS.F. KhanS. KatasH. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art.Colloids Surf. B Biointerfaces201715022324110.1016/j.colsurfb.2016.11.03627918967
    [Google Scholar]
  72. StohsS.J. JiJ. BucciL.R. PreussH.G. A comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: A randomized, double-blind, crossover study.J. Am. Coll. Nutr.2018371515910.1080/07315724.2017.135811829043927
    [Google Scholar]
  73. KhanS. ImranM. ButtT.T. Ali ShahS.W. SohailM. MalikA. DasS. ThuH.E. AdamA. HussainZ. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy.Trends Food Sci. Technol.20188082210.1016/j.tifs.2018.07.026
    [Google Scholar]
  74. Carolina AlvesR. Perosa FernandesR. Fonseca-SantosB. Damiani VictorelliF. ChorilliM. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices.Crit. Rev. Anal. Chem.201949213814910.1080/10408347.2018.148921630252504
    [Google Scholar]
  75. CuomoJ. AppendinoG. DernA.S. SchneiderE. McKinnonT.P. BrownM.J. TogniS. DixonB.M. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation.J. Nat. Prod.201174466466910.1021/np100726221413691
    [Google Scholar]
  76. GongC. WuQ. WangY. ZhangD. LuoF. ZhaoX. WeiY. QianZ. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing.Biomaterials201334276377638710.1016/j.biomaterials.2013.05.00523726229
    [Google Scholar]
  77. WangL.L. HeD.D. WangS.X. DaiY.H. JuJ.M. ZhaoC.L. Preparation and evaluation of curcumin-loaded self-assembled micelles.Drug Dev. Ind. Pharm.201844456356910.1080/03639045.2017.140543129148846
    [Google Scholar]
  78. PanahiY. SaadatA. BeiraghdarF. SahebkarA. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: A randomized double-blind placebo-controlled trial.Phytother. Res.201428101461146710.1002/ptr.514924648302
    [Google Scholar]
  79. Di PierroF. SettembreR. Safety and efficacy of an add-on therapy with curcumin phytosome and piperine and/or lipoic acid in subjects with a diagnosis of peripheral neuropathy treated with dexibuprofen.J. Pain Res.2013649750310.2147/JPR.S4843223861596
    [Google Scholar]
  80. SasakiH. SunagawaY. TakahashiK. ImaizumiA. FukudaH. HashimotoT. WadaH. KatanasakaY. KakeyaH. FujitaM. HasegawaK. MorimotoT. Innovative preparation of curcumin for improved oral bioavailability.Biol. Pharm. Bull.201134566066510.1248/bpb.34.66021532153
    [Google Scholar]
  81. KanaiM. ImaizumiA. OtsukaY. SasakiH. HashiguchiM. TsujikoK. MatsumotoS. IshiguroH. ChibaT. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers.Cancer Chemother. Pharmacol.2012691657010.1007/s00280‑011‑1673‑121603867
    [Google Scholar]
  82. LoprestiA.L. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall health-enhancing effects?Adv. Nutr.201891415010.1093/advances/nmx01129438458
    [Google Scholar]
  83. KakkarV. KaurI.P. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain.Food Chem. Toxicol.201149112906291310.1016/j.fct.2011.08.00621889563
    [Google Scholar]
  84. NayakA.P. TiyaboonchaiW. PatankarS. MadhusudhanB. SoutoE.B. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment.Colloids Surf. B Biointerfaces201081126327310.1016/j.colsurfb.2010.07.02020688493
    [Google Scholar]
  85. GottumukkalaS.V.S. SudarshanS. MantenaS. Comparative evaluation of the efficacy of two controlled release devices: Chlorhexidine chips and indigenous curcumin based collagen as local drug delivery systems.Contemp. Clin. Dent.20145217518110.4103/0976‑237X.13231024963242
    [Google Scholar]
  86. FunkJ.L. OyarzoJ.N. FryeJ.B. ChenG. LantzR.C. JoladS.D. SólyomA.M. TimmermannB.N. Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis.J. Nat. Prod.200669335135510.1021/np050327j16562833
    [Google Scholar]
  87. FunkJ.L. FryeJ.B. OyarzoJ.N. KuscuogluN. WilsonJ. McCaffreyG. StaffordG. ChenG. LantzR.C. JoladS.D. SólyomA.M. KielaP.R. TimmermannB.N. Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis.Arthritis Rheum.200654113452346410.1002/art.2218017075840
    [Google Scholar]
  88. NonoseN. PereiraJ.A. MachadoP.R.M. RodriguesM.R. SatoD.T. MartinezC.A.R. Oral administration of curcumin (Curcuma longa) can attenuate the neutrophil inflammatory response in zymosan-induced arthritis in rats.Acta Cir. Bras.2014291172773410.1590/S0102‑8650201400180000625424293
    [Google Scholar]
  89. PanahiY. RahimniaA.R. SharafiM. AlishiriG. SaburiA. SahebkarA. Curcuminoid treatment for knee osteoarthritis: A randomized double-blind placebo-controlled trial.Phytother. Res.201428111625163110.1002/ptr.517424853120
    [Google Scholar]
  90. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  91. Dei CasM. GhidoniR. Dietary curcumin: Correlation between bioavailability and health potential.Nutrients2019119214710.3390/nu1109214731500361
    [Google Scholar]
  92. TabanelliR. BrogiS. CalderoneV. Improving curcumin bioavailability: current strategies and future perspectives.Pharmaceutics20211310171510.3390/pharmaceutics1310171534684008
    [Google Scholar]
  93. StohsS.J. ChenO. RayS.D. JiJ. BucciL.R. PreussH.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review.Molecules2020256139710.3390/molecules2506139732204372
    [Google Scholar]
  94. KothapllyS. AlukapallyS. NagulaN. MaddelaR. Superior bioavailability of a novel curcumin formulation in healthy humans under fasting conditions.Adv. Ther.20223952128213810.1007/s12325‑022‑02081‑w35294738
    [Google Scholar]
  95. BelcaroG. HosoiM. PellegriniL. AppendinoG. IppolitoE. RicciA. LeddaA. DugallM. CesaroneM.R. MaioneC. CiammaichellaG. GenovesiD. TogniS. A controlled study of a lecithinized delivery system of curcumin (Meriva®) to alleviate the adverse effects of cancer treatment.Phytother. Res.201428344445010.1002/ptr.501423775598
    [Google Scholar]
  96. KuptniratsaikulV. DajprathamP. TaechaarpornkulW. BuntragulpoontaweeM. LukkanapichonchutP. ChootipC. SaengsuwanJ. TantayakomK. LaongpechS. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: A multicenter study.Clin. Interv. Aging2014945145810.2147/CIA.S5853524672232
    [Google Scholar]
  97. NakagawaY. MukaiS. YamadaS. MatsuokaM. TarumiE. HashimotoT. TamuraC. ImaizumiA. NishihiraJ. NakamuraT. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: A randomized, double-blind, placebo-controlled prospective study.J. Orthop. Sci.201419693393910.1007/s00776‑014‑0633‑025308211
    [Google Scholar]
  98. HenrotinY. PriemF. MobasheriA. Curcumin: A new paradigm and therapeutic opportunity for the treatment of osteoarthritis: Curcumin for osteoarthritis management.Springerplus2013215610.1186/2193‑1801‑2‑5623487030
    [Google Scholar]
  99. MobasheriA. HenrotinY. BiesalskiH.K. ShakibaeiM. Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health.Int. J. Mol. Sci.20121344202423210.3390/ijms1304420222605974
    [Google Scholar]
/content/journals/crr/10.2174/0115733971308639240529124155
Loading
/content/journals/crr/10.2174/0115733971308639240529124155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test