Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Introduction

GLP-1 receptor agonists (GLP-1 RAs) are anti-diabetic agents known for their anti-inflammatory and antioxidant properties. This study investigates the synergistic effects of GLP-1 RAs and radiotherapy (RT) on breast cancer in a preclinical mouse model.

Materials and Methods

Female BALB/c mice were inoculated with 4T1 breast cancer cells and divided into five groups: control, placebo, GLP-1 RA alone, RT alone, and combination treatment. GLP-1 RA was administered intraperitoneally, and a single 8 Gy RT dose was applied. Tumor volumes, histopathological changes, cytokine expression, and apoptosis-related protein profiles were evaluated. In vitro, 4T1 cell viability was assessed following GLP-1 RA and/or RT exposure.

Results

Combination therapy significantly reduced tumor volume compared to RT or GLP-1 RA alone. Histological analysis revealed improved tissue morphology with the combined approach. Immunohistochemical staining showed decreased expression of pro-inflammatory markers (IL-6, TNF-α) and angiogenic factors (VEGF-A, FGF-2), while pro-apoptotic proteins (caspase-3, BAD, p53) were elevated. findings confirmed a synergistic reduction in cell viability with combined treatment.

Discussion

The results indicate that GLP-1 RAs potentiate the antitumor effect of RT in breast cancer, primarily through modulation of apoptosis and the tumor microenvironment.

Conclusion

GLP-1 RAs may be effective adjuvants to RT in breast cancer, particularly for patients with diabetes. The dual benefit of tumor sensitization and protection of normal tissues offers a promising therapeutic avenue.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710381356250429045716
2025-12-01
2025-09-27
Loading full text...

Full text loading...

References

  1. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  2. CollinsL. CostelloR.A. Glucagon-Like Peptide-1 Receptor Agonists.StatPearlsStatPearls Publishing2024
    [Google Scholar]
  3. VilsbøllT. ChristensenM. JunkerA.E. KnopF.K. GluudL.L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials.BMJ20123442d777110.1136/bmj.d777122236411
    [Google Scholar]
  4. GilbertM.P. PratleyR.E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials.Front. Endocrinol. (Lausanne)20201117810.3389/fendo.2020.0017832308645
    [Google Scholar]
  5. VangoitsenhovenR. MathieuC. Van der SchuerenB. GLP1 and cancer: Friend or foe?Endocr. Relat. Cancer2012195F77F8810.1530/ERC‑12‑011122691625
    [Google Scholar]
  6. LigumskyH. WolfI. IsraeliS. HaimsohnM. FerberS. KarasikA. KaufmanB. RubinekT. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells.Breast Cancer Res. Treat.2012132244946110.1007/s10549‑011‑1585‑021638053
    [Google Scholar]
  7. LuX. XuC. DongJ. ZuoS. ZhangH. JiangC. WuJ. WeiJ. Liraglutide activates nature killer cell-mediated antitumor responses by inhibiting IL-6/STAT3 signaling in hepatocellular carcinoma.Transl. Oncol.202114110087210.1016/j.tranon.2020.10087232979685
    [Google Scholar]
  8. ShigeokaT. NomiyamaT. KawanamiT. HamaguchiY. HorikawaT. TanakaT. IrieS. MotonagaR. HamanoueN. TanabeM. NabeshimaK. TanakaM. YanaseT. KawanamiD. Activation of overexpressed glucagon‐like peptide‐1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression.J. Diabetes Investig.20201151137114910.1111/jdi.1324732146725
    [Google Scholar]
  9. YashiK. DaleyS.F. Obesity and Type 2 Diabetes.StatPearlsStatPearls Publishing2024
    [Google Scholar]
  10. DeheshT. FadaghiS. SeyediM. AbolhadiE. IlaghiM. ShamsP. AjamF. Mosleh-ShiraziM.A. DeheshP. The relation between obesity and breast cancer risk in women by considering menstruation status and geographical variations: A systematic review and meta-analysis.BMC Womens Health202323139210.1186/s12905‑023‑02543‑537496015
    [Google Scholar]
  11. SunX. ZhangQ. KadierK. HuP. LiuX. LiuJ. YanY. SunC. YauV. LoweS. MengM. LiuZ. ZhouM. Association between diabetes status and breast cancer in US adults: Findings from the US National Health and Nutrition Examination Survey.Front. Endocrinol. (Lausanne)202314105930310.3389/fendo.2023.105930337415670
    [Google Scholar]
  12. WangL. XuR. KaelberD.C. BergerN.A. Glucagon-Like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes.JAMA Netw. Open202477e242130510.1001/jamanetworkopen.2024.2130538967919
    [Google Scholar]
  13. CouncilN.R. Guide For The Care and Use of Laboratory.The National Academies PressWashington, D.C.2008
    [Google Scholar]
  14. de AlmeidaA.S. RigoF.K. De PráS.D.T. MilioliA.M. DalenogareD.P. PereiraG.C. RitterC.S. PeresD.S. AntoniazziC.T.D. SteinC. MorescoR.N. OliveiraS.M. TrevisanG. Characterization of cancer-induced nociception in a murine model of breast carcinoma.Cell. Mol. Neurobiol.201939560561710.1007/s10571‑019‑00666‑830850915
    [Google Scholar]
  15. PulaskiB.A. Ostrand-RosenbergS. Mouse 4T1 breast tumor model.Curr Protoc Immunol2001
    [Google Scholar]
  16. AksoyD. SolmazV. ÇavuşoğluT. MeralA. AteşU. ErbaşO. Neuroprotective effects of eexenatide in a rotenone-induced rat model of parkinson’s disease.Am. J. Med. Sci.2017354331932410.1016/j.amjms.2017.05.00228918840
    [Google Scholar]
  17. MohammadpourH. PourfathollahA.A. Nikougoftar ZarifM. ShahbazfarA.A. Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model.Sci. Rep.2016612843310.1038/srep2843327329316
    [Google Scholar]
  18. JiaD. KoonceN.A. GriffinR.J. JacksonC. CorryP.M. Prevention and mitigation of acute death of mice after abdominal irradiation by the antioxidant N-acetyl-cysteine (NAC).Radiat. Res.2010173557958910.1667/RR2030.120426657
    [Google Scholar]
  19. JensterleM. RizzoM. HaluzíkM. JanežA. Efficacy of GLP-1 RA approved for weight management in patients with or without diabetes: A narrative review.Adv. Ther.20223962452246710.1007/s12325‑022‑02153‑x35503498
    [Google Scholar]
  20. JiralerspongS. KimE.S. DongW. FengL. HortobagyiG.N. GiordanoS.H. Obesity, diabetes, and survival outcomes in a large cohort of early-stage breast cancer patients.Ann. Oncol.201324102506251410.1093/annonc/mdt22423793035
    [Google Scholar]
  21. ChouP.C. ChoiH.H. HuangY. Fuentes-MatteiE. Velazquez-TorresG. ZhangF. PhanL. LeeJ. ShiY. BanksonJ.A. WuY. WangH. ZhaoR. YeungS.C.J. LeeM.H. Impact of diabetes on promoting the growth of breast cancer.Cancer Commun. (Lond.)202141541443110.1002/cac2.1214733609419
    [Google Scholar]
  22. NeuhouserM.L. AragakiA.K. PrenticeR.L. MansonJ.E. ChlebowskiR. CartyC.L. Ochs-BalcomH.M. ThomsonC.A. CaanB.J. TinkerL.F. UrrutiaR.P. KnudtsonJ. AndersonG.L. Overweight, obesity, and postmenopausal invasive breast cancer risk.JAMA Oncol.20151561162110.1001/jamaoncol.2015.154626182172
    [Google Scholar]
  23. PiccoliG.F. MesquitaL.A. SteinC. AzizM. ZoldanM. DegobiN.A.H. SpiazziB.F. Lopes JuniorG.L. ColpaniV. GerchmanF. Do GLP-1 receptor agonists increase the risk of breast cancer? A systematic review and meta-analysis.J. Clin. Endocrinol. Metab.2021106391292110.1210/clinem/dgaa89133248445
    [Google Scholar]
  24. AlanteetA.A. AttiaH.A. ShaheenS. AlfayezM. AlshanawaniB. Anti-proliferative activity of glucagon-like peptide-1 receptor agonist on obesity-associated breast cancer: The impact on modulating adipokines’ expression in adipocytes and cancer cells.Dose Response2021191155932582199565110.1177/155932582199565133746653
    [Google Scholar]
  25. ChequinA. CostaL.E. de CamposF.F. MoncadaA.D.B. de LimaL.T.F. SledzL.R. PichethG.F. AdamiE.R. AccoA. GonçalvesM.B. ManicaG.C.M. ValdameriG. de NoronhaL. TellesJ.E.Q. JandreyE.H.F. CostaE.T. CostaF.F. de SouzaE.M. RamosE.A.S. KlassenG. Antitumoral activity of liraglutide, a new DNMT inhibitor in breast cancer cells in vitro and in vivo. Chem. Biol. Interact.202134910964110.1016/j.cbi.2021.10964134534549
    [Google Scholar]
  26. FandiñoJ. TobaL. González-MatíasL.C. Diz-ChavesY. MalloF. GLP-1 receptor agonist ameliorates experimental lung fibrosis.Sci. Rep.20201011809110.1038/s41598‑020‑74912‑133093510
    [Google Scholar]
  27. Garate-SoraluzeE. Marco-SanzJ. Serrano-MendiorozI. MarrodánL. Fernandez-RubioL. LabianoS. Rodríguez-RuizM.E. Radiotherapy protocols for mouse cancer model.Methods Cell Biol.20241859911310.1016/bs.mcb.2024.02.00738556454
    [Google Scholar]
  28. MeerenA.V. Lebaron-JacobsL. Behavioural consequences of an 8 Gy total body irradiation in mice: Regulation by interleukin-4.Cancer. J. Physiol. Pharmacol.200179214014310.1139/y00‑08211233562
    [Google Scholar]
  29. YuH. MohanS. NatarajanM. Radiation-triggered NF-κB activation is responsible for the angiogenic signaling pathway and neovascularization for breast cancer cell proliferation and growth.Breast Cancer (Auckl.)20126BCBCR.S959210.4137/BCBCR.S959222872788
    [Google Scholar]
  30. FuksZ. KolesnickR. Engaging the vascular component of the tumor response.Cancer Cell200582899110.1016/j.ccr.2005.07.01416098459
    [Google Scholar]
  31. ShiM. GuoX.T. ShuM.G. LiL.W. Enhancing tumor radiosensitivity by intracellular delivery of survivin antagonists.Med. Hypotheses20076851056105810.1016/j.mehy.2006.09.04817107755
    [Google Scholar]
  32. MarconiR. SerafiniA. GiovanettiA. BartoleschiC. PardiniM.C. BossiG. StrigariL. Cytokine modulation in breast cancer patients undergoing radiotherapy: A revision of the most recent studies.Int. J. Mol. Sci.201920238210.3390/ijms2002038230658426
    [Google Scholar]
  33. GrivennikovS.I. KarinM. Inflammation and oncogenesis: A vicious connection.Curr. Opin. Genet. Dev.2010201657110.1016/j.gde.2009.11.00420036794
    [Google Scholar]
  34. ChangL. ZhangZ. ChenF. ZhangW. SongS. SongS. Irradiation enhances dendritic cell potential antitumor activity by inducing tumor cell expressing TNF-α.Med. Oncol.20173434410.1007/s12032‑016‑0864‑328194716
    [Google Scholar]
  35. ShilohY. ZivY. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more.Nat. Rev. Mol. Cell Biol.201314419721010.1038/nrm3546
    [Google Scholar]
  36. CenturioneL. AielloF.B. DNA repair and cytokines: TGF-β, IL-6, and thrombopoietin as different biomarkers of radioresistance.Front. Oncol.2016617510.3389/fonc.2016.0017527500125
    [Google Scholar]
  37. GarcíaM.E.G. KirschD.G. ReitmanZ.J. Targeting the ATM kinase to enhance the efficacy of radiotherapy and outcomes for cancer patients.Semin. Radiat. Oncol.202232131410.1016/j.semradonc.2021.09.00834861994
    [Google Scholar]
  38. LiangK. JinW. KnuefermannC. SchmidtM. MillsG.B. AngK.K. MilasL. FanZ. Targeting the phosphatidylinositol 3-kinase/Akt pathway for enhancing breast cancer cells to radiotherapy.Mol. Cancer Ther.20032435336012700279
    [Google Scholar]
  39. ZhangY. HunterT. Roles of Chk1 in cell biology and cancer therapy.Int. J. Cancer201413451013102310.1002/ijc.2822623613359
    [Google Scholar]
  40. Bargiela-IparraguirreJ. Prado-MarchalL. Fernandez-FuenteM. Gutierrez-GonzálezA. Moreno-RubioJ. Muñoz-FernandezM. SerenoM. Sanchez-PrietoR. PeronaR. Sanchez-PerezI. CHK1 expression in gastric cancer is modulated by p53 and RB1/E2F1: implications in chemo/radiotherapy response.Sci. Rep.2016612151910.1038/srep2151926867682
    [Google Scholar]
  41. BarkerH.E. PatelR. McLaughlinM. SchickU. ZaidiS. NuttingC.M. NewboldK.L. BhideS. HarringtonK.J. CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based chemoradiotherapy.Mol. Cancer Ther.20161592042205410.1158/1535‑7163.MCT‑15‑099827422809
    [Google Scholar]
  42. QiuZ. OleinickN.L. ZhangJ. ATR/CHK1 inhibitors and cancer therapy.Radiother. Oncol.2018126345046410.1016/j.radonc.2017.09.04329054375
    [Google Scholar]
  43. FabbriziM.R. ParsonsJ.L. Radiotherapy and the cellular DNA damage response: current and future perspectives on head and neck cancer treatment.Cancer Drug Resist.20203477579010.20517/cdr.2020.4935582232
    [Google Scholar]
  44. MantovaniF. CollavinL. Del SalG. Mutant p53 as a guardian of the cancer cell.Cell Death Differ.201926219921210.1038/s41418‑018‑0246‑930538286
    [Google Scholar]
  45. LimL.Y. VidnovicN. EllisenL.W. LeongC-O. Mutant p53 mediates survival of breast cancer cells.Br. J. Cancer200910191606161210.1038/sj.bjc.660533519773755
    [Google Scholar]
  46. SherrC.J. RobertsJ.M. CDK inhibitors: positive and negative regulators of G1-phase progression.Genes Dev.199913121501151210.1101/gad.13.12.150110385618
    [Google Scholar]
  47. ChuI.M. HengstL. SlingerlandJ.M. The Cdk inhibitor p27 in human cancer: Prognostic potential and relevance to anticancer therapy.Nat. Rev. Cancer20088425326710.1038/nrc234718354415
    [Google Scholar]
  48. HuangT.T. KudoN. YoshidaM. MiyamotoS. A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes.Proc. Natl. Acad. Sci. USA20009731014101910.1073/pnas.97.3.101410655476
    [Google Scholar]
  49. MothesJ. BusseD. KofahlB. WolfJ. Sources of dynamic variability in NF‐κB signal transduction: A mechanistic model.BioEssays201537445246210.1002/bies.20140011325640005
    [Google Scholar]
  50. HoffmannA. NatoliG. GhoshG. Transcriptional regulation via the NF-κB signaling module.Oncogene200625516706671610.1038/sj.onc.120993317072323
    [Google Scholar]
  51. TaniguchiK. KarinM. NF-κB, inflammation, immunity and cancer: Coming of age.Nat. Rev. Immunol.201818530932410.1038/nri.2017.14229379212
    [Google Scholar]
  52. IwayaC. NomiyamaT. KomatsuS. KawanamiT. TsutsumiY. HamaguchiY. HorikawaT. YoshinagaY. YamashitaS. TanakaT. TerawakiY. TanabeM. NabeshimaK. IwasakiA. YanaseT. Exendin-4, a Glucagonlike Peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κB activation.Endocrinology2017158124218423210.1210/en.2017‑0046129045658
    [Google Scholar]
  53. GirolamiI. VeroneseN. SmithL. CarusoM.G. ReddavideR. LeandroG. DemurtasJ. NottegarA. The activation status of the TGF-β transducer Smad2 is associated with a reduced survival in gastrointestinal cancers: A systematic review and meta-analysis.Int. J. Mol. Sci.20192015383110.3390/ijms2015383131387321
    [Google Scholar]
  54. WangJ. XuZ. WangZ. DuG. LunL. TGF-beta signaling in cancer radiotherapy.Cytokine202114815570910.1016/j.cyto.2021.15570934597918
    [Google Scholar]
  55. WangZ. ZhangH. ShiM. YuY. WangH. CaoW.M. ZhaoY. ZhangH. TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells.Sci. Rep.2016613273710.1038/srep3273727599572
    [Google Scholar]
  56. PengD. FuM. WangM. WeiY. WeiX. Targeting TGF-β signal transduction for fibrosis and cancer therapy.Mol. Cancer202221110410.1186/s12943‑022‑01569‑x35461253
    [Google Scholar]
  57. BorstR. MeyaardL. Pascoal RamosM.I. Understanding the matrix: CSollagen modifications in tumors and their implications for immunotherapy.J. Transl. Med.202422138210.1186/s12967‑024‑05199‑338659022
    [Google Scholar]
  58. HuangQ. LiF. LiuX. LiW. ShiW. LiuF.F. O’SullivanB. HeZ. PengY. TanA.C. ZhouL. ShenJ. HanG. WangX.J. ThorburnJ. ThorburnA. JimenoA. RabenD. BedfordJ.S. LiC.Y. Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy.Nat. Med.201117786086610.1038/nm.238521725296
    [Google Scholar]
  59. FarillaL. BulottaA. HirshbergB. Li CalziS. KhouryN. NoushmehrH. BertolottoC. Di MarioU. HarlanD.M. PerfettiR. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets.Endocrinology2003144125149515810.1210/en.2003‑032312960095
    [Google Scholar]
  60. LindnerA.U. LucantoniF. VarešlijaD. ReslerA. MurphyB.M. GallagherW.M. HillA.D.K. YoungL.S. PrehnJ.H.M. Low cleaved caspase-7 levels indicate unfavourable outcome across all breast cancers.J. Mol. Med. (Berl.)201896101025103710.1007/s00109‑018‑1675‑030069746
    [Google Scholar]
  61. PalmeriniF. DevilardE. JarryA. BirgF. XerriL. Caspase 7 downregulation as an immunohistochemical marker of colonic carcinoma.Hum. Pathol.200132546146710.1053/hupa.2001.2432811381362
    [Google Scholar]
  62. RobergK. JonssonA.C. GrénmanR. Norberg-SpaakL. Radiotherapy response in oral squamous carcinoma cell lines: Evaluation of apoptotic proteins as prognostic factors.Head Neck200729432533410.1002/hed.2052017163470
    [Google Scholar]
  63. TorunoC. CarbonneauS. StewartR.A. JetteC. Interdependence of bad and puma during ionizing-radiation-induced apoptosis.PLoS One201492e8815110.1371/journal.pone.008815124516599
    [Google Scholar]
  64. ImJ.H. BuzzelliJ.N. JonesK. FranchiniF. Gordon-WeeksA. MarkelcB. ChenJ. KimJ. CaoY. MuschelR.J. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy.Nat. Commun.2020111406410.1038/s41467‑020‑17914‑x32792542
    [Google Scholar]
  65. PuriP.L. WuZ. ZhangP. WoodL.D. BhaktaK.S. HanJ. FeramiscoJ.R. KarinM. WangJ.Y.J. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells.Genes Dev.200014557458410.1101/gad.14.5.57410716945
    [Google Scholar]
  66. HaqR. BrentonJ.D. TakahashiM. FinanD. FinkielszteinA. DamarajuS. RottapelR. ZankeB. Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence.Cancer Res.200262175076508212208764
    [Google Scholar]
  67. CánovasB. IgeaA. SartoriA.A. GomisR.R. PaullT.T. IsodaM. Pérez-MontoyoH. SerraV. González-SuárezE. StrackerT.H. NebredaA.R. Targeting p38α increases DNA damage, chromosome instability, and the anti-tumoral response to taxanes in breast cancer cells.Cancer Cell201833610941110.e810.1016/j.ccell.2018.04.01029805078
    [Google Scholar]
  68. WadaM. CanalsD. AdadaM. CoantN. SalamaM.F. HelkeK.L. ArthurJ.S. ShroyerK.R. KitataniK. ObeidL.M. HannunY.A. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment.Oncogene201736476649665710.1038/onc.2017.27428783172
    [Google Scholar]
  69. RouschopK.M. DuboisL.J. KeulersT.G. van den BeuckenT. LambinP. BussinkJ. van der KogelA.J. KoritzinskyM. WoutersB.G. PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS.Proc. Natl. Acad. Sci. USA2013110124622462710.1073/pnas.121063311023471998
    [Google Scholar]
  70. BaiX. NiJ. BeretovJ. WasingerV.C. WangS. ZhuY. GrahamP. LiY. Activation of the eIF2α/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis.Redox Biol.20214310199310.1016/j.redox.2021.10199333946018
    [Google Scholar]
  71. MaramponF. CiccarelliC. ZaniB.M. Biological rationale for targeting MEK/ERK pathways in anti-cancer therapy and to potentiate tumour responses to radiation.Int. J. Mol. Sci.20192010253010.3390/ijms2010253031126017
    [Google Scholar]
  72. YacoubA. MillerA. CaronR.W. QiaoL. CurielD.A. FisherP.B. HaganM.P. GrantS. DentP. Radiotherapy-induced signal transduction.Endocr. Relat. Cancer200613Suppl. 1S99S11410.1677/erc.1.0127117259563
    [Google Scholar]
  73. XieB. ZhangL. HuW. FanM. JiangN. DuanY. JingD. XiaoW. FragosoR.C. LamK.S. SunL.Q. LiJ.J. Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells.Redox Biol.20192410118910.1016/j.redox.2019.10118930986607
    [Google Scholar]
  74. MaY. ZhanS. LuH. WangR. XuY. ZhangG. CaoL. ShiT. ZhangX. ChenW. B7-H3 regulates KIF15-activated ERK1/2 pathway and contributes to radioresistance in colorectal cancer.Cell Death Dis.2020111082410.1038/s41419‑020‑03041‑433011740
    [Google Scholar]
  75. KatsogiannouM. AndrieuC. RocchiP. Heat shock protein 27 phosphorylation state is associated with cancer progression.Front. Genet.2014534610.3389/fgene.2014.0034625339975
    [Google Scholar]
  76. ChoiS.K. KamH. KimK.Y. ParkS.I. LeeY.S. Targeting heat shock protein 27 in cancer: A druggable target for cancer treatment?Cancers2019118119510.3390/cancers1108119531426426
    [Google Scholar]
/content/journals/crp/10.2174/0118744710381356250429045716
Loading
/content/journals/crp/10.2174/0118744710381356250429045716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test