Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Introduction

[68Ga-DOTA-D-Phe1-Tyr3]octreotide ([68Ga]Ga-DOTA-TOC) is a somatostatin analogue largely used in PET/CT applications for the detection of gastroenteropancreatic neuroendocrine tumors (GEP-NET). Initially, it was obtained using a 68Ge/68Ga generator. The increasing cost of good manufacturing practice-compliant generators has led to the need to find alternative ways of producing Gallium-68 (68Ga). The aim of this work is to show the production optimization of [68Ga]Ga-DOTA-TOC cyclotron, derived from three years of experience.

Methods

The production of [68Ga]GaCl the 68Zn(p,n)68Ga reaction was optimized using a PETtrace 800 cyclotron (equipped with ZnO liquid target) and the synthesis of [68Ga]Ga-DOTA-TOC was performed by FASTlab2 developer system according to the Guidelines on Good Radiopharmacy Practice (cGRPP). Quality control process was validated according to the current specific monograph (2482) of the European Pharmacopoeia (Ph. Eur.).

Results

[68Ga]Ga-DOTA-TOC was produced in 40 minutes; ten validation batches met the quality criteria expected by the Ph. Eur. The synthesis process has involved many issues due to the use of acidic reagents and related corrosion of some components of cyclotron and developer system, resulting in 12.2% failed syntheses and a target breakdown after 11 months.

Discussion

The main issues, their causes and the strategies used to solve them are reported in the troubleshooting section: thanks to these strategies, the number of failed syntheses has decreased, and today, we have achieved a 0% failure rate.

Conclusion

Liquid target production of [68Ga]Ga-DOTA-TOC, once consolidated, instead of 68Ge/68Ga generator has many advantages.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710379515250506045145
2025-12-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/crp/18/4/CRP-18-4-05.html?itemId=/content/journals/crp/10.2174/0118744710379515250506045145&mimeType=html&fmt=ahah

References

  1. CivesM. StrosbergJ.R. Gastroenteropancreatic neuroendocrine tumors.CA Cancer J. Clin.201868647148710.3322/caac.2149330295930
    [Google Scholar]
  2. EvangelistaL. RavelliI. BignottoA. CecchinD. ZucchettaP. Ga-68 DOTA-peptides and F-18 FDG PET/CT in patients with neuroendocrine tumor: A review.Clin. Imaging20206711311610.1016/j.clinimag.2020.05.03532559681
    [Google Scholar]
  3. KandathilA. SubramaniamR.M. Gastroenteropancreatic neuroendocrine tumor diagnosis.PET Clin.202318218920010.1016/j.cpet.2022.11.00136585339
    [Google Scholar]
  4. LugatA. FrampasÉ. TouchefeuY. MiralliéÉ. BrasM.L. SenellartH. RauscherA. FleuryV. CampionL. RohmerV. CouturierO.F. LebtahiR. RouzetF. RuszniewskiP. Kraeber-BodéréF. BourgeoisM. AnsquerC. Prospective multicentric assessment of 68Ga-DOTANOC PET/CT in grade 1-2 GEP-NET.Cancers202315251310.3390/cancers1502051336672462
    [Google Scholar]
  5. Database of the national nuclear data center (NNDC) at brookhaven national laboratory.Available from: www.nndc.bnl.gov/nndc/nudat/radform.html
  6. WeberJ. HaberkornU. MierW. Cancer stratification by molecular imaging.Int. J. Mol. Sci.20151634918494610.3390/ijms1603491825749472
    [Google Scholar]
  7. FaniM. MansiR. NicolasG.P. WildD. Radiolabeled somatostatin analogs—A continuously evolving class of radiopharmaceuticals.Cancers2022145117210.3390/cancers1405117235267479
    [Google Scholar]
  8. GillingsN. HjelstuenO. BallingerJ. BeheM. DecristoforoC. ElsingaP. FerrariV. PeitlP.K. KoziorowskiJ. LavermanP. MindtT.L. NeelsO. OcakM. PattM. ToddeS. Guideline on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals.EJNMMI Radiopharm. Chem.202161810.1186/s41181‑021‑00123‑233580358
    [Google Scholar]
  9. GillingsN. ToddeS. BeheM. DecristoforoC. ElsingaP. FerrariV. HjelstuenO. PeitlP.K. KoziorowskiJ. LavermanP. MindtT.L. OcakM. PattM. EANM guideline on the validation of analytical methods for radiopharmaceuticals.EJNMMI Radiopharm. Chem.202051710.1186/s41181‑019‑0086‑z32052212
    [Google Scholar]
  10. RodnickM.E. SollertC. StarkD. ClarkM. KatsifisA. HockleyB.G. ParrD.C. FrigellJ. HendersonB.D. Abghari-GerstM. PiertM.R. FulhamM.J. EberlS. GagnonK. ScottP.J.H. Cyclotron-based production of 68Ga, [68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target.EJNMMI Radiopharm. Chem.2020512510.1186/s41181‑020‑00106‑933180205
    [Google Scholar]
  11. ManoharanP. LamarcaA. NavalkissoorS. CaleroJ. ChanP.S. JulyanP. SierraM. CaplinM. ValleJ. Safety, tolerability and clinical implementation of ‘ready-to-use’ 68gallium-DOTA0-Tyr3-octreotide (68Ga-DOTATOC) (SomaKIT TOC) for injection in patients diagnosed with gastroenteropancreatic neuroendocrine tumours (GEP-NETs).ESMO Open202052e00065010.1136/esmoopen‑2019‑00065032188715
    [Google Scholar]
  12. European Pharmacopoeia.2025Available from: https://pheur.edqm.eu/home
  13. PinotF. Le PennecR. AbgralR. Blanc-BéguinF. HennebicqS. SchickU. ValeriA. FournierG. Le RouxP.Y. SalaunP.Y. RobinP. PSMA-11 PET/CT for detection of recurrent prostate cancer in patients with negative choline PET/CT.Clin. Genitourin. Cancer202321224825710.1016/j.clgc.2022.12.00736658064
    [Google Scholar]
  14. PandeyM.K. ByrneJ.F. JiangH. PackardA.B. DeGradoT.R. Cyclotron production of (68)Ga via the (68)Zn(p,n)(68)Ga reaction in aqueous solution.Am. J. Nucl. Med. Mol. Imaging20144430331024982816
    [Google Scholar]
  15. WangI.E. BrooksA.F. ClarkM. MorrissetteL.J. ScottP.J.H. Improved purification of cyclotron [68Ga]GaCl3 for the production of 68Ga radiopharmaceuticals.Nucl. Med. Biol.2024130-13110889210.1016/j.nucmedbio.2024.10889238447298
    [Google Scholar]
  16. Marketing authorization for the medicinal product for human use «Germanium Chloride (68 Ge)/Gallium Chloride (68 Ga) GalliaPharm.Gazzetta Ufficiale2024217
    [Google Scholar]
  17. SomaKit TOC : EPAR - Product Information.2024Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/somakit-toc
  18. Classification, pursuant to Article 12, paragraph 5, Law No. 189 of 8 November 2012, of medicinal products for human use «Rekovelle» and «Somakit Toc», approved with a centralized procedure.Gazzetta Ufficiale201791
    [Google Scholar]
  19. RevyA. HallouardF. Joyeux-KlamberS. SkanjetiA. RioufolC. FraysseM. Feasibility and evaluation of automated methods for radiolabeling of radiopharmaceutical kits with Gallium-68.Curr. Radiopharm.201912322923710.2174/187447101266619011017062330636620
    [Google Scholar]
  20. PETtrace™ 800 cyclotron series.2024Available from: https://www.gehealthcare.com/-/jssmedia/feature/gehc/products/cyclotrons/pt800-cyclotron-system-data-sheet-rev6.pdf?rev=-1&srsltid=AfmBOopL6g_rcZYy-W2Gm9jJ3SFBzxM7Jq7UXe6V1fjfHRJNyJZXgGD_
  21. PandeyM.K. ByrneJ.F. SchlasnerK.N. SchmitN.R. DeGradoT.R. Cyclotron production of 68Ga in a liquid target: Effects of solution composition and irradiation parameters.Nucl. Med. Biol.201974-75495510.1016/j.nucmedbio.2019.03.00231085059
    [Google Scholar]
  22. LinM. WaligorskiG.J. LeperaC.G. Production of curie quantities of 68Ga with a medical cyclotron via the 68Zn(p,n)68Ga reaction.Appl. Radiat. Isot.20181331310.1016/j.apradiso.2017.12.01029272820
    [Google Scholar]
  23. RodnickM.E. SollertC. ParrD.C. FrigellJ. GagnonK. ScottP.J.H. Preparation of [68Ga]GaCl3 using a Cyclotron.Methods Mol. Biol.20242729556410.1007/978‑1‑0716‑3499‑8_538006491
    [Google Scholar]
  24. FASTlab2 Developer manual.2020Available from: https://www.gehealthcare.com/products/molecular-imaging/pet-radiochemistry/fastlab?srsltid=AfmBOoobZ12veYax8rCNvNlTioCOfZKYGFasA8OiRcr5VsXr4CiD-Vgz
  25. FASTlab Gallium Chloride tracer package 1.7.2022Available from: https://www.gehealthcare.com/products/molecular-imaging/pet-radiochemistry/fastlab?srsltid=AfmBOorv6xZyFEtzDvPQ8g8UFzqucrY01ern_HhRHSeH3SXHrLUhRXIb
  26. TaïebD. HicksR.J. HindiéE. GuilletB.A. AvramA. GhediniP. TimmersH.J. ScottA.T. ElojeimyS. RubelloD. VirgoliniI.J. FantiS. BalogovaS. Pandit-TaskarN. PacakK. European association of nuclear medicine practice guideline/society of nuclear medicine and molecular imaging procedure standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma.Eur. J. Nucl. Med. Mol. Imaging201946102112213710.1007/s00259‑019‑04398‑131254038
    [Google Scholar]
  27. RigaS. CicoriaG. PancaldiD. ZagniF. VichiS. DassennoM. MoraL. LodiF. MorigiM.P. MarengoM. Production of Ga-68 with a General Electric PETtrace cyclotron by liquid target.Phys. Med.20185511612610.1016/j.ejmp.2018.10.01830473059
    [Google Scholar]
  28. AshharZ. Ahmad FadzilM.F. Md SafeeZ. AzizF. IbarhimU.H. Nik AfindeN.M.F. Mat AilN. Jamal HarizanM.A.H. HalibD. Alek AmranA. AdawiyahR. Abd HamidM.H.N. MahamoodM. RazaliN.I. SaidM.A. Performance evaluation of Gallium-68 radiopharmaceuticals production using liquid target PETtrace 800 cyclotron.Appl. Radiat. Isot.202420511116110.1016/j.apradiso.2023.11116138163386
    [Google Scholar]
  29. GillingsN. HjelstuenO. BeheM. DecristoforoC. ElsingaP.H. FerrariV. KissO.C. KolencP. KoziorowskiJ. LavermanP. MindtT.L. OcakM. PattM. ToddeS. WalteA. EANM guideline on quality risk management for radiopharmaceuticals.Eur. J. Nucl. Med. Mol. Imaging202249103353336410.1007/s00259‑022‑05738‑435385986
    [Google Scholar]
  30. ThisgaardH. KumlinJ. LangkjærN. ChuaJ. HookB. JensenM. KassaianA. ZeislerS. BorjianS. CrossM. SchafferP. DamJ.H. Multi-curie production of gallium-68 on a biomedical cyclotron and automated radiolabelling of PSMA-11 and DOTATATE.EJNMMI Radiopharm. Chem.202161110.1186/s41181‑020‑00114‑933411034
    [Google Scholar]
  31. AshharZ. Ahmad FadzilM.F. OthmanM.F. YusofN.A. Abdul OnnyM.A. Mat AilN. Abd RahmanS.F. Cyclotron production of gallium-68 radiopharmaceuticals Using the 68Zn(p,n)68Ga reaction and their regulatory aspects.Pharmaceutics20221517010.3390/pharmaceutics1501007036678699
    [Google Scholar]
  32. MigliariS. SammartanoA. ScarlatteiM. BaldariG. JanotaB. BonadonnaR.C. RuffiniL. Feasibility of a scale-down production of [68Ga]Ga-NODAGA-Exendin-4 in a hospital based radiopharmacy.Curr. Radiopharm.2022151637510.2174/187447101466621030915193033687908
    [Google Scholar]
  33. RosenbergA.J. CheungY.Y. LiuF. SollertC. PetersonT.E. KropskiJ.A. Fully automated radiosynthesis of [68Ga]Ga-FAPI-46 with cyclotron produced gallium.EJNMMI Radiopharm. Chem.2023812910.1186/s41181‑023‑00216‑037843670
    [Google Scholar]
  34. WangI.E. ChengK. BrooksA.F. ScottP.J.H. VigliantiB.L. Towards a general method for using cyclotron-produced Ga68 to manufacture clinical and research Ga68 tracers.Molecules20242922545710.3390/molecules2922545739598846
    [Google Scholar]
/content/journals/crp/10.2174/0118744710379515250506045145
Loading
/content/journals/crp/10.2174/0118744710379515250506045145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test