Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairment. Despite extensive research, effective treatments remain elusive, highlighting the need for innovative therapeutic approaches. This review article explores enzymatic targets and drug development strategies aimed at combating AD. Key enzymatic targets include beta-secretase (BACE1), gamma-secretase, and tau protein kinases, all of which play critical roles in the pathogenesis of AD. BACE1 and gamma-secretase are involved in the production of amyloid-beta (Aβ) peptides, whose aggregation forms the hallmark amyloid plaques in AD brains. Inhibitors targeting these enzymes aim to reduce Aβ production and accumulation. Tau protein kinases, such as glycogen synthase kinase-3 (GSK-3) and cyclin-dependent kinase 5 (CDK5), are implicated in tau hyperphosphorylation and subsequent neurofibrillary tangle formation. Modulating these kinases offers the potential for reducing tau pathology. The review further discusses various drug development strategies, including small-molecule inhibitors, monoclonal antibodies, and gene therapy. Small molecule inhibitors, such as BACE1 and gamma-secretase inhibitors, have shown promise in preclinical studies but face challenges related to specificity and side effects. Monoclonal antibodies targeting Aβ and tau provide an alternative approach, with several candidates currently undergoing clinical trials. Gene therapy represents a cutting-edge strategy aiming to correct or modulate disease-causing genetic mutations. In summary, targeting enzymatic pathways involved in AD pathogenesis offers a promising avenue for drug development. While significant challenges remain, ongoing research and clinical trials continue to advance our understanding and potential treatment options for this debilitating disease.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560340307250106065419
2025-01-01
2025-09-09
Loading full text...

Full text loading...

References

  1. QuerfurthH.W. LaFerlaF.M. Alzheimer’s Disease.N. Engl. J. Med.2010362432934410.1056/NEJMra090914220107219
    [Google Scholar]
  2. PorsteinssonA.P. IsaacsonR.S. KnoxS. SabbaghM.N. RubinoI. Diagnosis of early Alzheimer’s disease: clinical practice in 2021.J. Prev. Alzheimers Dis.20218337138634101796
    [Google Scholar]
  3. KlyucherevT.O. OlszewskiP. ShalimovaA.A. ChubarevV.N. TarasovV.V. AttwoodM.M. SyvänenS. SchiöthH.B. Advances in the development of new biomarkers for Alzheimer’s disease.Transl. Neurodegener.20221112510.1186/s40035‑022‑00296‑z35449079
    [Google Scholar]
  4. WimoA. GuerchetM. AliG.C. WuY.T. PrinaA.M. WinbladB. JönssonL. LiuZ. PrinceM. The worldwide costs of dementia 2015 and comparisons with 2010.Alzheimers Dement.20171311710.1016/j.jalz.2016.07.15027583652
    [Google Scholar]
  5. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  6. SelkoeD.J. The molecular pathology of Alzheimer’s disease.Neuron19916448749810.1016/0896‑6273(91)90052‑21673054
    [Google Scholar]
  7. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  8. StrnadP. San MartinJ. RNAi therapeutics for diseases involving protein aggregation: fazirsiran for alpha-1 antitrypsin deficiency-associated liver disease.Expert Opin. Investig. Drugs202332757158110.1080/13543784.2023.223970737470509
    [Google Scholar]
  9. IqbalK. LiuF. GongC.X. Tau and neurodegenerative disease: the story so far.Nat. Rev. Neurol.2016121152710.1038/nrneurol.2015.22526635213
    [Google Scholar]
  10. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  11. TerryR.D. MasliahE. SalmonD.P. ButtersN. DeTeresaR. HillR. HansenL.A. KatzmanR. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment.Ann. Neurol.199130457258010.1002/ana.4103004101789684
    [Google Scholar]
  12. SwerdlowR.H. Brain aging, Alzheimer’s disease, and mitochondria.Biochim. Biophys. Acta Mol. Basis Dis.20111812121630163910.1016/j.bbadis.2011.08.01221920438
    [Google Scholar]
  13. VassarR. BennettB.D. Babu-KhanS. KahnS. MendiazE.A. DenisP. TeplowD.B. RossS. AmaranteP. LoeloffR. LuoY. FisherS. FullerJ. EdensonS. LileJ. JarosinskiM.A. BiereA.L. CurranE. BurgessT. LouisJ.C. CollinsF. TreanorJ. RogersG. CitronM. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE.Science1999286544073574110.1126/science.286.5440.73510531052
    [Google Scholar]
  14. De StrooperB. SaftigP. CraessaertsK. VandersticheleH. GuhdeG. AnnaertW. Von FiguraK. Van LeuvenF. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein.Nature1998391666538739010.1038/349109450754
    [Google Scholar]
  15. HernandezF. LucasJ.J. AvilaJ. GSK3 and tau: two convergence points in Alzheimer’s disease.J. Alzheimers Dis.201233s1Suppl. 1S141S14410.3233/JAD‑2012‑12902522710914
    [Google Scholar]
  16. BartusR.T. DeanR.L.III BeerB. LippaA.S. The cholinergic hypothesis of geriatric memory dysfunction.Science1982217455840841410.1126/science.70460517046051
    [Google Scholar]
  17. SaxenaM. DubeyR. Target Enzyme in Alzheimer’s Disease: Acetylcholinesterase Inhibitors.Curr. Top. Med. Chem.201919426427510.2174/156802661966619012812591230706815
    [Google Scholar]
  18. ColeS.L. VassarR. The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology.J. Biol. Chem.200828344296212962510.1074/jbc.R80001520018650431
    [Google Scholar]
  19. WillemM. LammichS. HaassC. Function, regulation and therapeutic properties of β-secretase (BACE1).Semin. Cell Dev. Biol.200920217518210.1016/j.semcdb.2009.01.00319429494
    [Google Scholar]
  20. MalS. MalikU. PalD. MishraA. Insight γ-Secretase: Structure, Function, and Role in Alzheimer’s Disease.Curr. Drug Targets202122121376140310.2174/138945012199920123020370933390127
    [Google Scholar]
  21. HeG. LuoW. LiP. RemmersC. NetzerW.J. HendrickJ. BettayebK. FlajoletM. GorelickF. WennogleL.P. GreengardP. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease.Nature20104677311959810.1038/nature0932520811458
    [Google Scholar]
  22. MartinL LatypovaX WilsonCM MagnaudeixA PerrinML YardinC TerroF Tau protein kinases: involvement in Alzheimer's disease.Ageing Res Rev.2013121289309
    [Google Scholar]
  23. Llorens-MartínM. JuradoJ. HernándezF. AvilaJ. GSK-3β, a pivotal kinase in Alzheimer disease.Front. Mol. Neurosci.201474610.3389/fnmol.2014.0004624904272
    [Google Scholar]
  24. YoudimM.B.H. EdmondsonD. TiptonK.F. The therapeutic potential of monoamine oxidase inhibitors.Nat. Rev. Neurosci.20067429530910.1038/nrn188316552415
    [Google Scholar]
  25. BortolatoM. ChenK. ShihJ.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics.Adv. Drug Deliv. Rev.20086013-141527153310.1016/j.addr.2008.06.00218652859
    [Google Scholar]
  26. HongR. LiX. Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches.MedChemComm2019101102510.1039/C8MD00446C30774851
    [Google Scholar]
  27. BarnerE.L. GrayS.L. Donepezil use in Alzheimer disease.Ann. Pharmacother.1998321707710.1345/aph.171509475825
    [Google Scholar]
  28. KumagaeY. MatsuiY. IwataN. Deamination of norepinephrine, dopamine, and serotonin by type A monoamine oxidase in discrete regions of the rat brain and inhibition by RS-8359.Jpn. J. Pharmacol.199155112112810.1016/S0021‑5198(19)39985‑81904113
    [Google Scholar]
  29. BehlT. KaurD. SehgalA. SinghS. SharmaN. ZenginG. Andronie-CioaraF.L. TomaM.M. BungauS. BumbuA.G. Role of Monoamine Oxidase Activity in Alzheimer’s Disease: An Insight into the Therapeutic Potential of Inhibitors.Molecules20212612372410.3390/molecules2612372434207264
    [Google Scholar]
  30. RobinsonD.S. Changes in monoamine oxidase and monoamines with human development and aging.Biol Aging Dev197520321210.1007/978‑1‑4684‑2631‑1_23
    [Google Scholar]
  31. AlamJ. SharmaL. Potential enzymatic targets in Alzheimer’s: a comprehensive review.Curr. Drug Targets201920331633910.2174/138945011966618082010472330124150
    [Google Scholar]
  32. BrodieB.B. SpectorS. ShoreP.A. Interaction of monoamine oxidase inhibitors with physiological and biochemical mechanisms in brain.Ann. N. Y. Acad. Sci.195980360961610.1111/j.1749‑6632.1959.tb49239.x13804624
    [Google Scholar]
  33. ThawabtehA.M. GhanemA.W. AbuMadiS. ThaherD. JaghamaW. KaramanD. KaramanR. Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease.Molecules20242921513110.3390/molecules2921513139519769
    [Google Scholar]
  34. GrossbergG.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on.Curr. Ther. Res. Clin. Exp.200364421623510.1016/S0011‑393X(03)00059‑624944370
    [Google Scholar]
  35. PilzW. Cholinesterases.Methods of Enzymatic Analysis.Academic Press197483185110.1016/B978‑0‑12‑091302‑2.50064‑5
    [Google Scholar]
  36. AryaR. JainS. PaliwalS. MadanK. SharmaS. MishraA. TiwariP. KadiriS.K. BACE1 inhibitors: A promising therapeutic approach for the management of Alzheimer’s disease.Asian Pac. J. Trop. Biomed.202414936938110.4103/apjtb.apjtb_192_24
    [Google Scholar]
  37. TamborskaA.A. BrayC.F. KurthT. Re: Shahim et al., 2024 "Cholinesterase inhibitors are associated with reduced mortality in patients with Alzheimer's disease and previous myocardial infarction"Eur. Heart J. Cardiovasc. Pharmacother.202410547647710.1093/ehjcvp/pvae04138806243
    [Google Scholar]
  38. HooperC. KillickR. LovestoneS. The GSK3 hypothesis of Alzheimer’s disease.J. Neurochem.200810461433143910.1111/j.1471‑4159.2007.05194.x18088381
    [Google Scholar]
  39. LaurettiE. DincerO. PraticòD. Glycogen synthase kinase-3 signaling in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Cell Res.20201867511866410.1016/j.bbamcr.2020.11866432006534
    [Google Scholar]
  40. ZhaoJ. WeiM. GuoM. WangM. NiuH. XuT. ZhouY. GSK3: A potential target and pending issues for treatment of Alzheimer’s disease.CNS Neurosci. Ther.2024307e1481810.1111/cns.1481838946682
    [Google Scholar]
  41. SayasC.L. ÁvilaJ. GSK-3 and Tau: a key duet in Alzheimer’s disease.Cells202110472110.3390/cells1004072133804962
    [Google Scholar]
  42. KremerA. LouisJ.V. JaworskiT. Van LeuvenF. GSK3 and Alzheimer’s disease: facts and fiction….Front. Mol. Neurosci.201141710.3389/fnmol.2011.0001721904524
    [Google Scholar]
  43. ColovićM.B. KrstićD.Z. Lazarević-PaštiT.D. BondžićA.M. VasićV.M. Acetylcholinesterase inhibitors: pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X1131103000624179466
    [Google Scholar]
  44. WalkerL.C. RosenR.F. Alzheimer therapeutics—what after the cholinesterase inhibitors?Age Ageing200635433233510.1093/ageing/afl00916644763
    [Google Scholar]
  45. ZhaoX. HuQ. WangX. LiC. ChenX. ZhaoD. QiuY. XuH. WangJ. RenL. ZhangN. LiS. GongP. HouY. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer’s disease.Eur. J. Med. Chem.202427911681010.1016/j.ejmech.2024.11681039243456
    [Google Scholar]
  46. CarvajalF.J. InestrosaN.C. Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706.Front. Mol. Neurosci.201141910.3389/fnmol.2011.0001921949501
    [Google Scholar]
  47. ShahimB. XuH. HaugaaK. ZetterbergH. JurgaJ. ReligaD. EriksdotterM. Cholinesterase inhibitors are associated with reduced mortality in patients with Alzheimer’s disease and previous myocardial infarction.Eur. Heart J. Cardiovasc. Pharmacother.202410212813610.1093/ehjcvp/pvad10238224338
    [Google Scholar]
  48. YangZ. ZouY. WangL. Neurotransmitters in prevention and treatment of Alzheimer’s disease.Int. J. Mol. Sci.2023244384110.3390/ijms2404384136835251
    [Google Scholar]
  49. KandimallaR. ReddyP.H. Therapeutics of neurotransmitters in Alzheimer’s disease.J. Alzheimers Dis.20175741049106910.3233/JAD‑16111828211810
    [Google Scholar]
  50. SharmaM. PalP. GuptaS.K. The neurotransmitter puzzle of Alzheimer’s: Dissecting mechanisms and exploring therapeutic horizons.Brain Res.2024182914879710.1016/j.brainres.2024.14879738342422
    [Google Scholar]
  51. ElectricwalaM. Neurotransmitters: Roles, functions, and impact on mental health.2024Available from: https://www.mavehealth.com/blogs/neurotransmitters-functions-examples-disorders#introduction-to-neurotransmitters
  52. CaflischA. Kinetic control of amyloidogenesis calls for unconventional drugs to fight Alzheimer’s disease.ACS Chem. Neurosci.202011210310410.1021/acschemneuro.9b0067631904213
    [Google Scholar]
  53. HoieE. Alzheimer’s disease: Current treatments and potential new agents.US Pharm.20194412023
    [Google Scholar]
  54. IwatsuboT. Development of disease‐modifying therapies against Alzheimer’s disease.Psychiatry Clin. Neurosci.202478949149410.1111/pcn.1368138842037
    [Google Scholar]
  55. PocockJ. A neurotransmitter with a fascinating story.Lancet Neurol.202423546410.1016/S1474‑4422(24)00138‑8
    [Google Scholar]
  56. van BokhovenP. de WildeA. VermuntL. LeferinkP.S. HeetveldS. CummingsJ. ScheltensP. VijverbergE.G.B. The Alzheimer’s disease drug development landscape.Alzheimers Res. Ther.202113118610.1186/s13195‑021‑00927‑z34763720
    [Google Scholar]
  57. Ebrahimi SamaniS. TatsukawaH. HitomiK. KaartinenM.T. Transglutaminase 1: Emerging Functions beyond Skin.Int. J. Mol. Sci.202425191030610.3390/ijms25191030639408635
    [Google Scholar]
  58. LaiT.S. DaviesC. GreenbergC.S. Human tissue transglutaminase is inhibited by pharmacologic and chemical acetylation.Protein Sci.201019222923510.1002/pro.30119998405
    [Google Scholar]
  59. MumaN.A. Transglutaminase is linked to neurodegenerative diseases.J. Neuropathol. Exp. Neurol.200766425826310.1097/nen.0b013e31803d3b0217413316
    [Google Scholar]
  60. MartinA. De VivoG. GentileV. Possible role of the transglutaminases in the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases.Int. J. Alzheimers Dis.20112011186543210.4061/2011/86543221350675
    [Google Scholar]
  61. WilhelmusM.M.M. de JagerM. BakkerE.N.T.P. DrukarchB. Tissue transglutaminase in Alzheimer’s disease: involvement in pathogenesis and its potential as a therapeutic target.J. Alzheimers Dis.201442s3Suppl. 3S289S30310.3233/JAD‑13249224685636
    [Google Scholar]
  62. AndréW. NondierI. ValensiM. GuillonneauF. FedericiC. HoffnerG. DjianP. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases.Neurobiol. Dis.2017101405810.1016/j.nbd.2017.01.00728132929
    [Google Scholar]
  63. KaratiD. MeurS. RoyS. MukherjeeS. DebnathB. JhaS.K. SarkarB.K. NaskarS. GhoshP. Glycogen synthase kinase 3 (GSK3) inhibition: a potential therapeutic strategy for Alzheimer’s disease.Naunyn Schmiedebergs Arch. Pharmacol.20242112410.1007/s00210‑024‑03500‑139432068
    [Google Scholar]
  64. De SimoneA. TumiattiV. AndrisanoV. MilelliA. Glycogen synthase kinase 3β: a new gold rush in anti-Alzheimer’s disease Multitarget Drug Discovery? Miniperspective.J. Med. Chem.2021641264110.1021/acs.jmedchem.0c0093133346659
    [Google Scholar]
  65. CaiZ. ZhaoY. ZhaoB. Roles of glycogen synthase kinase 3 in Alzheimer’s disease.Curr. Alzheimer Res.20129786487910.2174/15672051280245538622272620
    [Google Scholar]
  66. SharmaS. ChauhanN. PaliwalS. JainS. VermaK. PaliwalS. GSK-3β and its inhibitors in Alzheimer’s disease: a recent update.Mini Rev. Med. Chem.202222222881289510.2174/138955752266622042009431735450523
    [Google Scholar]
  67. GongC.X. DaiC.L. LiuF. IqbalK. Multi-targets: An unconventional drug development strategy for Alzheimer’s disease.Front. Aging Neurosci.20221483764910.3389/fnagi.2022.83764935222001
    [Google Scholar]
  68. LiuY. SiZ-Z. ZouC-J. MeiX. LiX-F. LuoH. ShenY. HuJ. LiX-X. WuL. Targeting neuroinflammation in Alzheimer’s disease: from mechanisms to clinical applications.Neural Regen. Res.202318470871510.4103/1673‑5374.35348436204826
    [Google Scholar]
  69. AmeliMojaradM. AmeliMojaradM. The neuroinflammatory role of microglia in Alzheimer’s disease and their associated therapeutic targets.CNS Neurosci. Ther.2024307e1485610.1111/cns.1485639031970
    [Google Scholar]
  70. LiuP. WangY. SunY. PengG. Neuroinflammation as a potential therapeutic target in Alzheimer’s disease.Clin. Interv. Aging20221766567410.2147/CIA.S35755835520949
    [Google Scholar]
  71. FuW.Y. WangX. IpN.Y. Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: mechanisms, drug candidates, and new opportunities.ACS Chem. Neurosci.201910287287910.1021/acschemneuro.8b0040230221933
    [Google Scholar]
  72. CongdonE.E. JiC. TetlowA.M. JiangY. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease: current status and future directions.Nat. Rev. Neurol.2023191271573610.1038/s41582‑023‑00883‑237875627
    [Google Scholar]
  73. GaikwadS. SenapatiS. HaqueM.A. KayedR. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer’s disease: Evidence from clinical and preclinical studies.Alzheimers Dement.202420170972710.1002/alz.1349037814508
    [Google Scholar]
  74. Pichet BinetteA. FranzmeierN. SpotornoN. EwersM. BrendelM. BielD. WeinerM. AisenP. PetersenR. JackC.R.Jr JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. SaykinA.J. MorrisJ. ShawL.M. LiuE. MontineT. ThomasR.G. DonohueM. WalterS. GessertD. SatherT. JiminezG. HarveyD. BernsteinM. FoxN. ThompsonP. SchuffN. DeCArliC. BorowskiB. GunterJ. SenjemM. VemuriP. JonesD. KantarciK. WardC. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. LandauS. CairnsN.J. HouseholderE. ReinwaldL.T. LeeV. KoreckaM. FigurskiM. CrawfordK. NeuS. ForoudT.M. PotkinS. ShenL. KelleyF. KimS. NhoK. KachaturianZ. FrankR. SnyderP.J. MolchanS. KayeJ. QuinnJ. LindB. CarterR. DolenS. SchneiderL.S. PawluczykS. BecceraM. TeodoroL. SpannB.M. BrewerJ. VanderswagH. FleisherA. HeidebrinkJ.L. LordJ.L. MasonS.S. AlbersC.S. KnopmanD. JohnsonK. DoodyR.S. MeyerJ.V. ChowdhuryM. RountreeS. DangM. SternY. HonigL.S. BellK.L. AncesB. MorrisJ.C. CarrollM. LeonS. HouseholderE. MintunM.A. SchneiderS. OliverNGA. GriffithR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. GrossmanH. MitsisE. deToledo-MorrellL. ShahR.C. DuaraR. VaronD. GreigM.T. RobertsP. AlbertM. OnyikeC. D’AgostinoD.II KielbS. GalvinJ.E. PogorelecD.M. CerboneB. MichelC.A. RusinekH. de LeonM.J. GlodzikL. De SantiS. DoraiswamyP.M. PetrellaJ.R. WongT.Z. ArnoldS.E. KarlawishJ.H. WolkD. SmithC.D. JichaG. HardyP. SinhaP. OatesE. ConradG. LopezO.L. OakleyM.A. SimpsonD.M. PorsteinssonA.P. GoldsteinB.S. MartinK. MakinoK.M. IsmailM.S. BrandC. MulnardR.A. ThaiG. Mc Adams OrtizC. WomackK. MathewsD. QuicenoM. ArrastiaR.D. KingR. WeinerM. CookK.M. DeVousM. LeveyA.I. LahJ.J. CellarJ.S. BurnsJ.M. AndersonH.S. SwerdlowR.H. ApostolovaL. TingusK. WooE. SilvermanD.H.S. LuP.H. BartzokisG. Graff RadfordN.R. ParfittHF. KendallT. JohnsonH. FarlowM.R. HakeA.M. MatthewsB.R. HerringS. HuntC. van DyckC.H. CarsonR.E. MacAvoyM.G. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. HsiungG.Y.R. FeldmanH. MudgeB. PastM.A. KerteszA. RogersJ. TrostD. BernickC. MunicD. KerwinD. MesulamM.M. LipowskiK. WuC.K. JohnsonN. SadowskyC. MartinezW. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. FreyM. YesavageJ. TaylorJ.L. LaneB. RosenA. TinklenbergJ. SabbaghM.N. BeldenC.M. JacobsonS.A. SirrelS.A. KowallN. KillianyR. BudsonA.E. NorbashA. JohnsonP.L. ObisesanT.O. WoldayS. AllardJ. LernerA. OgrockiP. HudsonL. FletcherE. CarmichaelO. OlichneyJ. DeCarliC. KitturS. BorrieM. LeeT.Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. PotkinS.G. PredaA. NguyenD. TariotP. FleisherA. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. AdeliA. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. SantulliR.B. KitzmillerT.J. SchwartzE.S. SinkSK.M. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. MintzerJ. SpicerK. BachmanD. FingerE. PasternakS. RachinskyI. RogersJ. KerteszA. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. PontoL.L.B. ShimH. SmithK.E. RelkinN. ChaingG. RaudinL. SmithA. FargherK. RajB.A. StrandbergO. JanelidzeS. PalmqvistS. Mattsson-CarlgrenN. SmithR. StomrudE. OssenkoppeleR. HanssonO. Amyloid-associated increases in soluble tau relate to tau aggregation rates and cognitive decline in early Alzheimer’s disease.Nat. Commun.2022131663510.1038/s41467‑022‑34129‑436333294
    [Google Scholar]
  75. KentS.A. Spires-JonesT.L. DurrantC.S. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics.Acta Neuropathol.2020140441744710.1007/s00401‑020‑02196‑w32728795
    [Google Scholar]
  76. CummingsJ. ZhouY. LeeG. ZhongK. FonsecaJ. ChengF. Alzheimer’s disease drug development pipeline: 2023.Alzheimers Dement. (N. Y.)202392e1238510.1002/trc2.1238537251912
    [Google Scholar]
  77. AbdallahA.E. Review on anti-alzheimer drug development: approaches, challenges and perspectives.RSC Advances20241416110571108810.1039/D3RA08333K38586442
    [Google Scholar]
  78. KloskeC.M. BelloyM.E. BlueE.E. BowmanG.R. CarrilloM.C. ChenX. Chiba-FalekO. DavisA.A. PaoloG.D. GarrettiF. GateD. GoldenL.R. HeineckeJ.W. HerzJ. HuangY. IadecolaC. JohnsonL.A. KanekiyoT. KarchC.M. KhvorovaA. Koppes-den HertogS.J. LambB.T. LawlerP.E. GuenY.L. LitvinchukA. LiuC.C. MahinradS. MarcoraE. MarinoC. MichaelsonD.M. MillerJ.J. MorgantiJ.M. NarayanP.S. NaslavskyM.S. OosthoekM. RamachandranK.V. RamakrishnanA. RaulinA.C. RobertA. SalehR.N.M. SextonC. ShahN. ShueF. SibleI.J. SorannoA. StricklandM.R. TcwJ. ThierryM. TsaiL.H. TuckeyR.A. UlrichJ.D. van der KantR. WangN. WellingtonC.L. WeningerS.C. YassineH.N. ZhaoN. BuG. GoateA.M. HoltzmanD.M. Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference.Alzheimers Dement.20242096590660510.1002/alz.1387739031528
    [Google Scholar]
  79. NarasimhanS. HoltzmanD.M. ApostolovaL.G. CruchagaC. MastersC.L. HardyJ. VillemagneV.L. BellJ. ChoM. HampelH. Apolipoprotein E in Alzheimer’s disease trajectories and the next-generation clinical care pathway.Nat. Neurosci.20242771236125210.1038/s41593‑024‑01669‑538898183
    [Google Scholar]
  80. SahuPK TiwariP PrustySK SubudhiBB Past and Present Drug Development for Alzheimer's Disease.Frontiers in Clinical Drug Research - Alzheimer DisordersBentham Science Publisher201810.2174/9781681085609118070009
    [Google Scholar]
  81. TiwariP. DasG.M. RachamallaM. SahooJ. ShrivastavaS. Role of NMDA and Dopamine Receptor against Neurodegenerative Disease: A Comprehensive Review.Journal of Pharma and Drug Regulatory Affairs.202022122010.46610/JPDRA.2023.v05i02.002
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560340307250106065419
Loading
/content/journals/cpsp/10.2174/0122115560340307250106065419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test