Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Neuroleptic drug therapy, used to manage psychotic disorders, often induces hormonal disruptions that can impact patient health and treatment outcomes. This review explores the relationship between neuroleptic medications and the endocrine system, highlighting current insights and clinical challenges. Antipsychotic drugs often elevate prolactin levels, leading to hyperprolactinemia, which manifests as galactorrhea, amenorrhea, and sexual dysfunction. These medications can also alter insulin and glucagon levels, contributing to metabolic syndromes, like type 2 diabetes and insulin resistance. Disruption of thyroid hormone homeostasis can result in hypothyroidism or hyperthyroidism, exacerbating psychiatric symptoms. Moreover, neuroleptic drugs affect growth hormone and adrenal function, potentially causing weight gain and adrenal insufficiency. Understanding these hormonal side effects is crucial for developing treatment plans that mitigate adverse effects while optimizing psychiatric care. Despite advances in psychopharmacology, challenges remain in predicting individual patient responses and managing long-term endocrine complications. Current research underscores the need for routine endocrine monitoring in patients on neuroleptic therapy and exploring adjunctive treatments to counteract these side effects. Future studies should focus on elucidating the molecular mechanisms underlying these hormonal disruptions and developing targeted interventions to improve patient outcomes. This review provides an overview of the hormonal side effects of neuroleptic drugs, emphasizing the importance of interdisciplinary approaches in addressing the needs of patients with psychotic disorders.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560341728250202075329
2025-01-01
2025-09-09
Loading full text...

Full text loading...

References

  1. MiyamotoS. DuncanG.E. MarxC.E. LiebermanJ.A. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs.Mol. Psychiatry20051017910410.1038/sj.mp.400155615289815
    [Google Scholar]
  2. HaddadP.M. WieckA. Antipsychotic-induced hyperprolactinaemia.Drugs200464202291231410.2165/00003495‑200464200‑0000315456328
    [Google Scholar]
  3. NasrallahH.A. Atypical antipsychotic-induced metabolic side effects: Insights from receptor-binding profiles.Mol. Psychiatry2008131273510.1038/sj.mp.400206617848919
    [Google Scholar]
  4. MeltzerH.Y. Mechanism of action of atypical antipsychotic drugs: A review.Eur. Psychiatry199914S15S21
    [Google Scholar]
  5. GrunderG. HippiusH. CarlssonA. The “dopamine hypothesis” of schizophrenia: Current status and future prospects.Psychopharmacology19991463209224
    [Google Scholar]
  6. KapurS. SeemanP. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action.J. Psychiatry Neurosci.200025216116610740989
    [Google Scholar]
  7. LallyJ. MacCabeJ.H. Antipsychotic medication in schizophrenia: A review.Br. Med. Bull.2015114116917910.1093/bmb/ldv01725957394
    [Google Scholar]
  8. CitromeL. Olanzapine: A review of clinical efficacy, safety, and tolerability.Clin. Ther.200426564966610.1016/S0149‑2918(04)90066‑515220010
    [Google Scholar]
  9. NarasappaK.K. KadiriS.K. TiwariP. BindigiR. KumarM.V. CYP3A4-associated food drug interactions: The impact of combined intake of alprazolam with cranberry and pomegranate juice treating anxiety caused by kidney stones.One Health Bullet.202442555910.4103/ohbl.ohbl_34_23
    [Google Scholar]
  10. HoltR.I.G. PevelerR.C. Antipsychotics and hyperprolactinaemia: Mechanisms, consequences and management.Clin. Endocrinol.201174214114710.1111/j.1365‑2265.2010.03814.x20455888
    [Google Scholar]
  11. BymasterF.P. FelderC.C. TzavaraE. NomikosG.G. CalligaroD.O. MckinzieD.L. Muscarinic mechanisms of antipsychotic atypicality.Prog. Neuropsychopharmacol. Biol. Psychiatry20032771125114310.1016/j.pnpbp.2003.09.00814642972
    [Google Scholar]
  12. HertD.M. DobbelaereM. SheridanE.M. CohenD. CorrellC.U. Metabolic and endocrine adverse effects of second-generation antipsychotics in children and adolescents: A systematic review of randomized, placebo controlled trials and guidelines for clinical practice.Eur. Psychiatry201126314415810.1016/j.eurpsy.2010.09.01121295450
    [Google Scholar]
  13. StroupT.S. MarderS.R. Pharmacotherapy for schizophrenia: A review.Am. J. Psychiatry2012169111622223005
    [Google Scholar]
  14. LangU.E. PulsI. MüllerD.J. SeebohmS.N. GallinatJ. Molecular mechanisms of schizophrenia.Cell. Physiol. Biochem.200720668770210.1159/00011043017982252
    [Google Scholar]
  15. CorrellC.U. From receptor pharmacology to improved outcomes: Individualising the selection, dosing, and switching of antipsychotics.Eur. Psychiatry201025S2S12S2110.1016/S0924‑9338(10)71701‑620620881
    [Google Scholar]
  16. KaramC.S. BurrisK.D. BanksM. PaylorR. SabatiniB.L. NicolR.A. Targeting the dopamine D2 receptor in neuropsychiatric and neurodegenerative disorders.Nat. Rev. Drug Discov.2016159653669
    [Google Scholar]
  17. HowesO.D. KapurS. The dopamine hypothesis of schizophrenia: Version III--the final common pathway.Schizophr. Bull.200935354956210.1093/schbul/sbp00619325164
    [Google Scholar]
  18. LeuchtS. CiprianiA. SpineliL. MavridisD. ÖreyD. RichterF. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A network meta-analysis.Lancet2013382989695196210.1016/S0140‑6736(13)60733‑323810019
    [Google Scholar]
  19. KadiriS.K. AneeshaU. SushmithaK.S. AshishL. SuthakaranR. Antidepressant activity of Cardamom oil by using marble burying test in rats.Pharm. Lett.201683279282
    [Google Scholar]
  20. CaseyD.E. HauptD.W. NewcomerJ.W. HendersonD.C. SernyakM.J. DavidsonM. LindenmayerJ.P. ManoukianS.V. BanerjiM.A. LebovitzH.E. HennekensC.H. Antipsychotic-induced weight gain and metabolic abnormalities: Implications for increased mortality in patients with schizophrenia.J. Clin. Psychiatry200465S741815151456
    [Google Scholar]
  21. ReynoldsG.P. Receptor mechanisms in the treatment of schizophrenia.J. Psychopharmacol.200418334034510.1177/02698811040180030315358977
    [Google Scholar]
  22. MeltzerH.Y. ArvanitisL. BauerD. ReinW. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder.Am. J. Psychiatry2004161697598410.1176/appi.ajp.161.6.97515169685
    [Google Scholar]
  23. TiwariP. PanikR. BhattacharyaA. AhirwarD. ChandyA. Evidences of possible side effects of neuroleptic drugs: A systematic review.Asian Pac. J. Reprod.20121433033610.1016/S2305‑0500(13)60105‑0
    [Google Scholar]
  24. RusgisM.M. AlabbasiA.Y. NelsonL.A. Guidance on the treatment of antipsychotic-induced hyperprolactinemia when switching the antipsychotic is not an option.Am. J. Health Syst. Pharm.2021781086287110.1093/ajhp/zxab06533954421
    [Google Scholar]
  25. NewcomerJ.W. Second-generation (atypical) antipsychotics and metabolic effects: A comprehensive literature review.CNS Drugs20051919310.2165/00023210‑200519001‑0000115998156
    [Google Scholar]
  26. PeuskensJ. PaniL. DetrauxJ. HertD.M. The effects of novel and newly approved antipsychotics on serum prolactin levels: A comprehensive review.CNS Drugs201428542145310.1007/s40263‑014‑0157‑324677189
    [Google Scholar]
  27. HarrisL.W. GuestP.C. WaylandM.T. UmraniaY. KrishnamurthyD. RahmouneH. BahnS. Schizophrenia: Metabolic aspects of aetiology, diagnosis and future treatment strategies.Psychoneuroendocrinol.201338675276610.1016/j.psyneuen.2012.09.00923084727
    [Google Scholar]
  28. DickersonF.B. BrownC.H. KreyenbuhlJ.A. FangL. GoldbergR.W. WohlheiterK. DixonL.B. Obesity among individuals with serious mental illness.Acta Psychiatr. Scand.2006113430631310.1111/j.1600‑0447.2005.00637.x16638075
    [Google Scholar]
  29. MarragI. HajjiK. BrahamM.Y. DhifallahM. NasrM. Antipsychotics and hyperprolactinemia: Prevalence and risk factors.Ann. Psychiatry Ment. Health2015361047
    [Google Scholar]
  30. KhalilB.R. RichaS. Thyroid adverse effects of psychotropic drugs: A review.Clin. Neuropharmacol.201134624825510.1097/WNF.0b013e31823429a721996646
    [Google Scholar]
  31. GreenW.K. HuangX.F. DengC. Second generation antipsychotic-induced type 2 diabetes: A role for the muscarinic M3 receptor.CNS Drugs201327121069108010.1007/s40263‑013‑0115‑524114586
    [Google Scholar]
  32. MelmedS. CasanuevaF.F. HoffmanA.R. KleinbergD.L. MontoriV.M. SchlechteJ.A. WassJ.A.H. Diagnosis and treatment of hyperprolactinemia: An Endocrine Society clinical practice guideline.J. Clin. Endocrinol. Metab.201196227328810.1210/jc.2010‑169221296991
    [Google Scholar]
  33. TorreD.L. FalorniA. Pharmacological causes of hyperprolactinemia.Ther. Clin. Risk Manag.20073592995118473017
    [Google Scholar]
  34. HarrisJ. StanfordP.M. OakesS.R. OrmandyC.J. Prolactin and the prolactin receptor: New targets of an old hormone.Ann. Med.200436641442510.1080/0785389041003389215513293
    [Google Scholar]
  35. JonathanB.N. HugoE.R. BrandebourgT.D. LaPenseeC.R. Focus on prolactin as a metabolic hormone.Trends Endocrinol. Metab.200617311011610.1016/j.tem.2006.02.00516517173
    [Google Scholar]
  36. ByerlyM. SuppesT. TranQ.V. BakerR.A. Clinical implications of antipsychotic-induced hyperprolactinemia in patients with schizophrenia spectrum or bipolar spectrum disorders: Recent developments and current perspectives.J. Clin. Psychopharmacol.200727663966110.1097/jcp.0b013e31815ac4e518004132
    [Google Scholar]
  37. KinonB.J. GilmoreJ.A. LiuH. HalbreichU.M. Prevalence of hyperprolactinemia in schizophrenic patients treated with conventional antipsychotic medications or risperidone11This work was sponsored by Eli Lilly and Company.Psychoneuroendocrinology200328S2556810.1016/S0306‑4530(02)00127‑012650681
    [Google Scholar]
  38. The American psychiatric association practice guideline for the treatment of patients with Schizophrenia.3rd Ed.American Psychiatric Association Publishing2020
    [Google Scholar]
  39. RodríguezG.A. LabadJ. SeemanM.V. Antipsychotic-induced Hyperprolactinemia in aging populations: Prevalence, implications, prevention and management.Prog. Neuropsychopharmacol. Biol. Psychiatry20201011310994110.1016/j.pnpbp.2020.10994132243999
    [Google Scholar]
  40. MolitchM.E. Medication-induced hyperprolactinemia.Mayo Clin. Proc.20058081050105710.4065/80.8.105016092584
    [Google Scholar]
  41. MelmedS. JamesonJ.L. Disorders of the anterior pituitary and hypothalamus.Harrison’s principles of internal medicine.16th Ed. KasperD.L. FauciA.S. LongoD.L. HauserS.L. JamesonJ.L. New YorkMcGraw-Hill Companies, Inc.200520762097
    [Google Scholar]
  42. HalbreichU. KinonB.J. GilmoreJ.A. KahnL.S. Elevated prolactin levels in patients with schizophrenia: Mechanisms and related adverse effects.Psychoneuroendocrinology200328536710.1016/S0306‑4530(02)00112‑912504072
    [Google Scholar]
  43. KasumM. OreškovićS. ČehićE. ŠunjM. LilaA. EjubovićE. Laboratory and clinical significance of macroprolactinemia in women with hyperprolactinemia.Taiwan. J. Obstet. Gynecol.201756671972410.1016/j.tjog.2017.10.00229241908
    [Google Scholar]
  44. CrismonM.L. BuckleyP.F. Pharmacotherapy a pathophysiologic approach.6th Ed.New YorkMcGraw-Hill Companies, Inc.200512091233
    [Google Scholar]
  45. Janssen Pharmaceutica ProductsL.P. Risperdal (risperidone) package insert.NJTitusville2007
    [Google Scholar]
  46. AnuchitW.C. Clinical management of antipsychotic-induced hyperprolactinemia.Perspect. Psychiatr. Care201652214515210.1111/ppc.1211125772527
    [Google Scholar]
  47. KellyD.L. PowellM.M. WehringH.J. SayerM.A. KearnsA.M. HackmanA.L. BuchananR.W. NicholsR.B. AdamsH.A. RichardsonC.M. VyasG. McMahonR.P. EarlA.K. SullivanK.M. LiuF. LuttrellS.E. DickersonF.B. FeldmanS.M. NarangS. KoolaM.M. BuckleyP.F. RachBeiselJ.A. McEvoyJ.P. Adjunct aripiprazole reduces prolactin and prolactin-related adverse effects in premenopausal women with psychosis: Results from the DAAMSEL clinical trial.J. Clin. Psychopharmacol.201838431732610.1097/JCP.000000000000089829912799
    [Google Scholar]
  48. HofferZ.S. RothR.L. MathewsM. Evidence for the partial dopamine-receptor agonist aripiprazole as a first-line treatment of psychosis in patients with iatrogenic or tumorogenic hyperprolactinemia.Psychosomatics200950431732410.1176/appi.psy.50.4.31719687170
    [Google Scholar]
  49. KootenV.M. ArendsJ. CohenD. Preliminary report.J. Clin. Psychopharmacol.201131112612810.1097/JCP.0b013e318205e1aa21192158
    [Google Scholar]
  50. TrivesZ.M. LlácerB.J.M. EscuderoG.M.A. PastorM.C.J. Effect of the addition of aripiprazole on hyperprolactinemia associated with risperidone long-acting injection.J. Clin. Psychopharmacol.201333453854110.1097/JCP.0b013e318297043123775053
    [Google Scholar]
  51. LiX. TangY. WangC. Adjunctive aripiprazole versus placebo for antipsychotic-induced hyperprolactinemia: Meta-analysis of randomized controlled trials.PLoS One201388e7017910.1371/journal.pone.007017923936389
    [Google Scholar]
  52. BoggsD.L. RanganathanM. BoggsA.A. BihdayC.M. PeluseB.E. D’SouzaD.C. Treatment of hyperprolactinemia and gynecomastia with adjunctive aripiprazole in 2 men receiving long-acting injectable antipsychotics.Prim. Care Companion CNS Disord.2013154PCC.13l0151910.4088/PCC.13l0151924392257
    [Google Scholar]
  53. OhM.C. AghiM.K. Dopamine agonist–resistant prolactinomas.J. Neurosurg.201111451369137910.3171/2010.11.JNS10136921214334
    [Google Scholar]
  54. LeeM.S. SongH.C. AnH. YangJ. KoY.H. JungI.K. JoeS.H. Effect of bromocriptine on antipsychotic drug‐induced hyperprolactinemia: Eight‐week randomized, single‐blind, placebo‐controlled, multicenter study.Psychiatry Clin. Neurosci.2010641192710.1111/j.1440‑1819.2009.02032.x19968833
    [Google Scholar]
  55. CavallaroR. CocchiF. AngeloneS.M. LattuadaE. SmeraldiE. Cabergoline treatment of risperidone-induced hyperprolactinemia: A pilot study.J. Clin. Psychiatry200465218719010.4088/JCP.v65n020715003071
    [Google Scholar]
  56. VelazquezE.M. MendozaS. HamerT. SosaF. GlueckC.J. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy.Metabolism199443564765410.1016/0026‑0495(94)90209‑78177055
    [Google Scholar]
  57. BaptistaT. ElFakihY. UzcáteguiE. SandiaI. TálamoE. de BaptistaA.E. BeaulieuS. Pharmacological management of atypical antipsychotic-induced weight gain.CNS Drugs200822647749510.2165/00023210‑200822060‑0000318484791
    [Google Scholar]
  58. ZhengW. CaiD.B. LiH.Y. WuY.J. NgC.H. UngvariG.S. XieS.S. ShiZ.M. ZhuX.M. NingY.P. XiangY.T. Adjunctive Peony-Glycyrrhiza decoction for antipsychotic-induced hyperprolactinaemia: A meta-analysis of randomised controlled trials.Gen. Psychiatr.2018311e10000310.1136/gpsych‑2018‑10000330582119
    [Google Scholar]
  59. KabiriM. KamalinejadM. BioosS. ShariatM. SohrabvandF. Comparative study of the effects of chamomile (Matricaria Chamomilla L.) and cabergoline on idiopathic hyperprolactinemia: A pilot randomized controlled trial.Iran. J. Pharm. Res.20191831612162132641968
    [Google Scholar]
  60. SamuelT.A. TA. Okonkwo CL. Ezeazuka SK. Ekpoiba AJ. Endocrinological and metabolic effects of a polyherbal decoction of five Nigerian folkloric herbs on haloperidol induced hyperprolactinemia.J. Pharmacogn. Phytother.20135611411910.5897/JPP2013.0266
    [Google Scholar]
  61. DosoutoC. CalafJ. PoloA. HaahrT. HumaidanP. Growth hormone and reproduction: Lessons learned from animal models and clinical trials.Front. Endocrinol.20191040410.3389/fendo.2019.0040431297089
    [Google Scholar]
  62. MelmedS. Physiology of growth hormone.UpToDate. RoseB.D. Waltham, MA2008
    [Google Scholar]
  63. LengyelA.M.J. Novel mechanisms of growth hormone regulation: Growth hormone-releasing peptides and ghrelin.Braz. J. Med. Biol. Res.20063981003101110.1590/S0100‑879X200600080000216906274
    [Google Scholar]
  64. BanerjeeS. ChaturvediC.M. Specific neural phase relation of serotonin and dopamine modulate the testicular activity in Japanese quail.J. Cell. Physiol.201923432866287910.1002/jcp.2710430073648
    [Google Scholar]
  65. MelkerssonK HultingAL Antipsychotic drugs can affect hormone balance. Weight gain, blood lipid disturbances and diabetes are important.Lakartidningen2001984854624
    [Google Scholar]
  66. BymasterF.P. CalligaroD.O. FalconeJ.F. MarshR.D. MooreN.A. TyeN.C. SeemanP. WongD.T. Radioreceptor binding profile of the atypical antipsychotic olanzapine.Neuropsychopharmacol.1996142879610.1016/0893‑133X(94)00129‑N8822531
    [Google Scholar]
  67. GerebenB. ZavackiA.M. RibichS. KimB.W. HuangS.A. SimonidesW.S. ZeöldA. BiancoA.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling.Endocr. Rev.200829789893810.1210/er.2008‑001918815314
    [Google Scholar]
  68. CarvalhoO.T.M. SidhayeA.R. WondisfordF.E. Thyroid hormone receptors and resistance to thyroid hormone disorders.Nat. Rev. Endocrinol.2014101058259110.1038/nrendo.2014.14325135573
    [Google Scholar]
  69. LeonardJ. Non-genomic actions of thyroid hormone in brain development.Steroids2008739-101008101210.1016/j.steroids.2007.12.01618280526
    [Google Scholar]
  70. KennedyS.H. LamR.W. McIntyreR.S. TourjmanS.V. BhatV. BlierP. HasnainM. JollantF. LevittA.J. MacQueenG.M. McInerneyS.J. McIntoshD. MilevR.V. MüllerD.J. ParikhS.V. PearsonN.L. RavindranA.V. UherR. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: Section 3. Pharmacological treatments.Can. J. Psychiatry201661954056010.1177/070674371665941727486148
    [Google Scholar]
  71. SauvageMF MarquetP RousseauA Relationship between psychotropic drugs and thyroid function: A review.Toxicol. Appl. Pharmacol.19981492127135
    [Google Scholar]
  72. FoldesJ NagyJ KertaiP Effect of chlorpromazine on thyroid activity.Acta Med Acad Sci Hung195914371Y378
    [Google Scholar]
  73. LambergBA LinnoilaM FogelholmR The effect of psychotropic drugs on the TSH-response to thyroliberin (TRH).Neuroendocrinology19772429097
    [Google Scholar]
  74. TiwariP. SahuP.K. Neuroleptic drug-induced hyperprolactinemia and associated neurochemical, hematological and histological changes in rats.Drug Discov.20211535122131
    [Google Scholar]
  75. WetzelH WiesnerJ HiemkeC Acute antagonism of dopamine D2-like receptors by amisulpride: Effects on hormone secretion in healthy volunteers.J. Psychiat. Res.1994285461473
    [Google Scholar]
  76. PaunoviVR TimotijeviI MarinkoviD Neuroleptic actions on the thyroid axis: Different effects of clozapine and haloperidol.Int. Clin. Psychopharmacol.199163133140
    [Google Scholar]
  77. KunoF. OkadaY. AraoT. KurozumiA. TanakaY. Case of graves’ disease with remarkable psychiatric symptoms.J. UOEH2015371495310.7888/juoeh.37.4925787102
    [Google Scholar]
  78. BornJ. FehmH.L. VoigtK.H. ACTH and attention in humans: A review.Neuropsychobiology1986153-416518610.1159/0001182613024062
    [Google Scholar]
  79. HolzbauerM. VogtM. The action of chlorpromazine on diencephalic sympathetic activity and on the release of adrenocorticotrophic hormone.Br. J. Pharmacol. Chemother.195494402
    [Google Scholar]
  80. GuptaP. MohantyB. Atypical antipsychotic drug modulates early life infection induced impairment of hypothalamic-pituitary-adrenal axis: An age related study in mice.Eur. J. Pharmacol.202087217297810.1016/j.ejphar.2020.17297832014487
    [Google Scholar]
  81. GiraudP. LissitzkyJ.C. DevolxC.B. GilliozP. OliverC. Influence of haloperidol on ACTH and β-endorphin secretion in the rat.Eur. J. Pharmacol.1980622-321521710.1016/0014‑2999(80)90279‑46247158
    [Google Scholar]
  82. WoodruffM.J.H. GredenJ.F. Effects of psychotropic medications on hypothalamic-pituitary-adrenal regulation.Neurol. Clin.19886122523410.1016/S0733‑8619(18)30894‑62898096
    [Google Scholar]
  83. VancampfortD. WampersM. MitchellA.J. CorrellC.U. HerdtD.A. ProbstM. HertD.M. A meta-analysis of cardio-metabolic abnormalities in drug naïve, first-episode and multi-episode patients with schizophrenia versus general population controls.World Psychia.201312324025010.1002/wps.2006924096790
    [Google Scholar]
  84. CorrellC.U. ManuP. OlshanskiyV. NapolitanoB. KaneJ.M. MalhotraA.K. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents.JAMA2009302161765177310.1001/jama.2009.154919861668
    [Google Scholar]
  85. RajkumarA.P. HorsdalH.T. WimberleyT. CohenD. MorsO. BørglumA.D. GasseC. Endogenous and antipsychotic-related risks for diabetes mellitus in young people with schizophrenia: A danish population-based cohort study.Am. J. Psychiatry2017174768669410.1176/appi.ajp.2016.1604044228103712
    [Google Scholar]
  86. AmmonH.P. OrciL. SteinkeJ. Effect of chlorpromazine (CPZ) on insulin release in vivo and in vitro in the rat.J. Pharmacol. Exp. Ther.197318724234294583983
    [Google Scholar]
  87. FederspilG. CasaraD. StauffacherW. Chlorpromazine in the treatment of endogenous organic hyperinsulinism.Diabetologia197410318919110.1007/BF004230324845719
    [Google Scholar]
  88. HermansenK. Haloperidol, a dopaminergic antagonist: Somatostatin-like inhibition of glucagon and insulin release from the isolated, perfused canine pancreas.Diabetologia197815434334710.1007/BF03161000710756
    [Google Scholar]
  89. MelkerssonK. KhanA. HildingA. HultingA.L. Different effects of antipsychotic drugs on insulin release in vitro.Eur. Neuropsychopharmacol.200111532733210.1016/S0924‑977X(01)00108‑011597818
    [Google Scholar]
  90. VestriH.S. MaianuL. MoelleringD.R. GarveyW.T. Atypical antipsychotic drugs directly impair insulin action in adipocytes: Effects on glucose transport, lipogenesis, and antilipolysis.Neuropsychopharmacol.200732476577210.1038/sj.npp.130114216823387
    [Google Scholar]
  91. BallonJ.S. PajvaniU. FreybergZ. LeibelR.L. LiebermanJ.A. Molecular pathophysiology of metabolic effects of antipsychotic medications.Trends Endocrinol. Metab.2014251159360010.1016/j.tem.2014.07.00425190097
    [Google Scholar]
  92. FreybergZ. GittesG.K. Roles of pancreatic islet catecholamine neurotransmitters in glycemic control and in antipsychotic drug–induced dysglycemia.Diabetes202372131510.2337/db22‑052236538602
    [Google Scholar]
  93. TiwariP. ChandyA. KumarK. MishraR. AhirwarD. Neuroleptic drug induced hyperprolactinaemia: Pathophysiology, safety and acceptability.Asian Pac. J. Reprod.201321697510.1016/S2305‑0500(13)60120‑7
    [Google Scholar]
  94. Standards of medical care in diabetes—2022.Diabetes Care202245S1S210.2337/dc22‑Sint34964812
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560341728250202075329
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test