Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Alzheimer's disease is distinguished by gradual changes in behavior because of the aggregation of β-amyloid and τ protein that blocks the signal transduction pathway. It is one of the major problems in the current scenario. It mainly occurs after the age of 60 and eventually leads to memory loss. Nonetheless, medicinal plants have therapeutic potential to improve many diseases. Medicinal drugs with their phytoconstituents may offer therapeutic potential for improving the preventive treatment for Alzheimer's disease. Five synthetic drugs that have been approved by the FDA include Tacrine, Rivastigmine, Donepezil, Galantamine, and Memantine for the symptomatic treatment of Alzheimer's. In the search for effective anti-Alzheimer's drugs from a natural source, we discovered marine resources as the origin of the therapeutic and nutritional compound. The methodology involves conducting a comprehensive literature survey. The database search methodology used in this review was the use of keywords, which can be found in the article pertaining to Alzheimer’s disease. The significant articles focused on marine flora phytoconstituents, such as acetylcholinesterase or butyrylcholinesterase inhibitors, thus prompting a comprehensive review based on pertinent information. The review included descriptions of various studies, revealing that numerous compounds derived from marine sources have demonstrated promising efficacy in the treatment of Alzheimer's disease. Many compounds that originated from marine sources showed good efficacy in treating Alzheimer’s disease. Acetylcholinesterase or butyrylcholinesterase inhibition was the main pharmacological mechanism that was reported for most of the molecules, however, few articles having alternative anti Alzheimer’s mechanisms have also been reported. This article highlights marine compounds derived from marine sources like algae, fungi, and sponges, which can combat Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560329324241203113505
2025-01-01
2025-10-30
Loading full text...

Full text loading...

References

  1. YuC.X. WangR.Y. QiF.M. SuP.J. YuY.F. LiB. ZhaoY. ZhiD.J. ZhangZ.X. FeiD.Q. Eupulcherol A, a triterpenoid with a new carbon skeleton from Euphorbia pulcherrima, and its anti-Alzheimer’s disease bioactivity.Org. Biomol. Chem.2020181768010.1039/C9OB02334H31773124
    [Google Scholar]
  2. LakshmiS. PrakashP. EssaM.M. QoronflehW.M. AkbarM. SongB.J. KumarS. ElumalaiP. Marine derived bioactive compounds for treatment of Alzheimer’s disease.Front. Biosci.201810353754829772526
    [Google Scholar]
  3. RussoP. KisialiouA. LamonacaP. MoroniR. PrinziG. FiniM. New Drugs from Marine Organisms in Alzheimer’s Disease.Mar. Drugs2015141510.3390/md1401000526712769
    [Google Scholar]
  4. HansenR.A. GartlehnerG. WebbA.P. MorganL.C. MooreC.G. JonasD.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis.Clin. Interv. Aging20083221122518686744
    [Google Scholar]
  5. MehtaM. AdemA. SabbaghM. New acetylcholinesterase inhibitors for Alzheimer’s disease.Int. J. Alzheimers Dis.201220121272898322216416
    [Google Scholar]
  6. MalveH. Exploring the ocean for new drug developments: Marine pharmacology.J. Pharm. Bioallied Sci.201682839110.4103/0975‑7406.17170027134458
    [Google Scholar]
  7. El GamalA.A. Biological importance of marine algae.Saudi Pharm. J.201018112510.1016/j.jsps.2009.12.00123960716
    [Google Scholar]
  8. KruegerK. BoehmeE. KlettnerA.K. ZilleM. The potential of marine resources for retinal diseases: A systematic review of the molecular mechanisms.Crit. Rev. Food Sci. Nutr.202262277518756010.1080/10408398.2021.191524233970706
    [Google Scholar]
  9. MontaserR. LueschH. Marine natural products: A new wave of drugs?Future Med. Chem.20113121475148910.4155/fmc.11.11821882941
    [Google Scholar]
  10. VenugopalV. Marine Products for Healthcare: Functional and Bioactive Nutraceutical compounds from the ocean.Functional Food & Nutraceutical SeriesCRC Press: New-York2009
    [Google Scholar]
  11. VogelG. The inner lives of sponges.Science200832058791028103010.1126/science.320.5879.102818497285
    [Google Scholar]
  12. ZhengY. ChenX. ChenL. ShenL. FuX. ChenQ. ChenM. WangC. Isolation and neuroprotective activity of phenolic derivatives from the marine-derived fungus Penicillium janthinellum.J. Ocean Univ. China202019370070610.1007/s11802‑020‑4286‑7
    [Google Scholar]
  13. NgoD.H. VoT.S. NgoD.N. WijesekaraI. KimS.K. Biological activities and potential health benefits of bioactive peptides derived from marine organisms.Int. J. Biol. Macromol.201251437838310.1016/j.ijbiomac.2012.06.00122683669
    [Google Scholar]
  14. YendeS. ChauguleB.B. HarleU.N. Therapeutic potential and health benefits of Sargassum species.Pharmacogn. Rev.20148151710.4103/0973‑7847.12551424600190
    [Google Scholar]
  15. Abo-ShadyA.M. GhedaS.F. IsmailG.A. CotasJ. PereiraL. Abdel-KarimO.H. Antioxidant and antidiabetic activity of algae.Life202313246010.3390/life1302046036836817
    [Google Scholar]
  16. IbrahimT.N.B.T. FeisalN.A.S. KamaludinN.H. CheahW.Y. HowV. BhatnagarA. MaZ. ShowP.L. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review.Bioresour. Technol.202337212866110.1016/j.biortech.2023.12866136690215
    [Google Scholar]
  17. BiskupiakZ. HaV.V. RohajA. BulajG. Digital therapeutics for improving effectiveness of pharmaceutical drugs and biological products: Preclinical and clinical studies supporting development of drug + digital combination therapies for chronic diseases.J. Clin. Med.202413240310.3390/jcm1302040338256537
    [Google Scholar]
  18. OrtegaH.E. LourenzonV.B. ChevretteM.G. FerreiraL.L.G. AlvarengaR.F.R. MeloW.G.P. VenâncioT. CurrieC.R. AndricopuloA.D. BugniT.S. PupoM.T. Antileishmanial macrolides from ant-associated Streptomyces sp. ISID311.Bioorg. Med. Chem.20213211601610.1016/j.bmc.2021.11601633493972
    [Google Scholar]
  19. KhareE. The interplay of marine exposure in gestational diabetes.Curr. Womens Health Rev.202117141310.2174/1573404816999200914152625
    [Google Scholar]
  20. BrillatzT. LauritanoC. JacminM. KhammaS. MarcourtL. RighiD. RomanoG. EspositoF. IanoraA. QueirozE.F. WolfenderJ.L. CrawfordA.D. Zebrafish-based identification of the antiseizure nucleoside inosine from the marine diatom Skeletonema marinoi.PLoS One2018134e019619510.1371/journal.pone.019619529689077
    [Google Scholar]
  21. SchepersMelissa MartensNikita TianeAssia Edible seaweed-derived constituents: An undisclosed source of neuroprotective compounds.Neural Regen Res.2020155790795
    [Google Scholar]
  22. NyiewK-Y. NguE-L. WongK-H. GohB-H. YowY-Y. Neuroprotective potential of marine algal antioxidants.Marine antioxidants.UK & USAAcademic Press202334135310.1016/B978‑0‑323‑95086‑2.00030‑8
    [Google Scholar]
  23. EktaK. Natural Antioxidants in the Management of Alzheimer’s Disease Book Antioxidant-Based Therapies for Disease Prevention and Management.1st edApple Academic Press202118
    [Google Scholar]
  24. KwonY.J. KwonO.I. HwangH.J. ShinH.C. YangS. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders.Front. Mol. Neurosci.202316119359010.3389/fnmol.2023.119359037305552
    [Google Scholar]
  25. TalbotN.C. LutherP.M. SpillersN.J. RaglandA.R. KidderE.J. KelkarR.A. VarrassiG. AhmadzadehS. ShekoohiS. KayeA.D. Neuroprotective potential of melatonin: Evaluating therapeutic efficacy in Alzheimer’s and Parkinson’s Diseases.Cureus20231512e5094810.7759/cureus.5094838259379
    [Google Scholar]
  26. DhanabalanA.K. KumarP. VasudevanS. ChworosA. VelmuruganD. Identification of a novel drug molecule for neurodegenerative disease from marine algae through in-silico analysis.J. Biomol. Struct. Dyn.2024111010.1080/07391102.2024.232262438456260
    [Google Scholar]
  27. CatanesiM. CaioniG. CastelliV. BenedettiE. d’AngeloM. CiminiA. Benefits under the sea: The role of marine compounds in neurodegenerative disorders.Mar. Drugs20211912410.3390/md1901002433430021
    [Google Scholar]
  28. ChoiJS. Fucosterol from an Edible Brown Alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats.Mar. Drugs2008567810.3390/md16100368
    [Google Scholar]
  29. KhareE. FatimaZ. Recent advances and current perspectives in treatment of Alzheimer’s disease.Environ. Conserv. J.2020211&218318610.36953/ECJ.2020.211224
    [Google Scholar]
  30. ZhangL.J. ZhangH.Z. LiuY.W. TangM. JiangY.J. LiF.N. GuanL.P. JinQ.H. Sulphated Fucooligosaccharide from Sargassum Horneri: Structural analysis and anti-alzheimer activity.Neurochem. Res.20244961592160210.1007/s11064‑024‑04107‑x38305960
    [Google Scholar]
  31. PaulS. DeyM. RoyB. DharaB. MitraA.K. Potentiality of marine microbial metabolites in the remedy of Alzheimer’s Disease: A comprehensive review.Proc. Zool. Soc.202477329330310.1007/s12595‑024‑00542‑4
    [Google Scholar]
  32. AdemM.A. DecourtB. SabbaghM.N. Pharmacological approaches using diabetic drugs repurposed for Alzheimer’s Disease.Biomedicines20241219910.3390/biomedicines1201009938255204
    [Google Scholar]
  33. DaiZ. HuT. WeiJ. WangX. CaiC. GuY. HuY. WangW. WuQ. FangJ. Network-based identification and mechanism exploration of active ingredients against Alzheimer’s disease via targeting endoplasmic reticulum stress from Traditional Chinese Medicine.Comput. Struct. Biotechnol. J.2024232350651910.1016/j.csbj.2023.12.01738261917
    [Google Scholar]
  34. LeeJ. JunM. Dual BACE1 and cholinesterase inhibitory effects of phlorotannins from Ecklonia cava—An in vitro and in silico study.Mar. Drugs20191729110.3390/md1702009130717208
    [Google Scholar]
  35. KabirM.T. UddinM.S. JeandetP. EmranT.B. MitraS. AlbadraniG.M. SayedA.A. Abdel-DaimM.M. Simal-GandaraJ. Anti-alzheimer’s molecules derived from marine life: Understanding molecular mechanisms and therapeutic potential.Mar. Drugs202119525110.3390/md1905025133925063
    [Google Scholar]
  36. AnandR. GillK.D. MahdiA.A. Therapeutics of Alzheimer’s disease: Past, present and future.Neuropharmacology201476Pt A275010.1016/j.neuropharm.2013.07.00423891641
    [Google Scholar]
  37. NooriT. DehpourA.R. SuredaA. Sobarzo-SanchezE. ShirooieS. Role of natural products for the treatment of Alzheimer’s disease.Eur. J. Pharmacol.202189817397410.1016/j.ejphar.2021.17397433652057
    [Google Scholar]
  38. LeeJY WongCY KohRY LimCL KokYY ChyeSM Natural bioactive compounds from macroalgae and microalgae for the treatment of Alzheimer's Disease: A review.Yale J Biol Med.202497220522410.59249/JNKB9714
    [Google Scholar]
  39. DefantA. CarloniG. InnocentiN. TrobecT. FrangežR. SepčićK. ManciniI. Structural insights into the marine alkaloid Discorhabdin G as a scaffold towards new acetylcholinesterase inhibitors.Mar. Drugs202422417310.3390/md2204017338667790
    [Google Scholar]
  40. Smyrska-WielebaN. MroczekT. Natural inhibitors of cholinesterases: Chemistry, structure–activity and methods of their analysis.Int. J. Mol. Sci.2023243272210.3390/ijms2403272236769043
    [Google Scholar]
  41. MoodieL.W.K. SepčićK. TurkT. FrangežR. SvensonJ. SvensonJ. Natural cholinesterase inhibitors from marine organisms.Nat. Prod. Rep.20193681053109210.1039/C9NP00010K30924818
    [Google Scholar]
  42. JungH.A. AliM.Y. ChoiR.J. JeongH.O. ChungH.Y. ChoiJ.S. Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera.Food Chem. Toxicol.20168910411110.1016/j.fct.2016.01.01426825629
    [Google Scholar]
  43. EhrenbergA.J. KhatunA. CoomansE. BettsM.J. CapraroF. ThijssenE.H. SenkevichK. BharuchaT. JafarpourM. YoungP.N.E. JagustW. CarterS.F. LashleyT. GrinbergL.T. PereiraJ.B. Mattsson-CarlgrenN. AshtonN.J. HanriederJ. ZetterbergH. SchöllM. PatersonR.W. Relevance of biomarkers across different neurodegenerative diseases.Alzheimers Res. Ther.20201215610.1186/s13195‑020‑00601‑w32404143
    [Google Scholar]
  44. AlghazwiM. SmidS. MusgraveI. ZhangW. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ1-42) toxicity and aggregation.Neurochem. Int.201912421522410.1016/j.neuint.2019.01.01030639263
    [Google Scholar]
  45. RahmanS.O. PandaB.P. ParvezS. KaundalM. HussainS. AkhtarM. NajmiA.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease.Biomed. Pharmacother.2019110475810.1016/j.biopha.2018.11.04330463045
    [Google Scholar]
  46. Yang LD. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer’s Disease in APP/PS1 double-transgenic mice.J Agric Food Chem.20186619494857
    [Google Scholar]
  47. ChenM.H. WangT.J. ChenL.J. JiangM.Y. WangY.J. TsengG.F. ChenJ.R. The effects of astaxanthin treatment on a rat model of Alzheimer’s disease.Brain Res. Bull.202117215116310.1016/j.brainresbull.2021.04.02033932491
    [Google Scholar]
  48. HuangC. WenC. YangM. LiA. FanC. GanD. LiQ. ZhaoJ. ZhuL. LuD. Astaxanthin improved the cognitive deficits in APP/PS1 transgenic mice via selective activation of mTOR.J. Neuroimmune Pharmacol.202116360961910.1007/s11481‑020‑09953‑432944864
    [Google Scholar]
  49. RibeiroJ. Araújo-SilvaH. FernandesM. da SilvaJ.A. PintoF.C.L. PessoaO.D.L. SantosH.S. de MenezesJ.E.S.A. GomesA.C. Petrosamine isolated from marine sponge Petrosia sp. demonstrates protection against neurotoxicity in vitro and in vivo.Nat. Prod. Bioprospect.20241411610.1007/s13659‑024‑00439‑x38383833
    [Google Scholar]
  50. ParkS-R. KimY.H. YangS.Y. Enzyme kinetics and molecular docking investigation of acetylcholinesterase and butyrylcholinesterase inhibitors from the marine Alga Ecklonia cava.Nat. Prod. Sci.202329318219210.20307/nps.2023.29.3.182
    [Google Scholar]
  51. KowalN.M. DiX. OmarsdottirS. OlafsdottirE.S. Flustramine Q, a novel marine origin acetylcholinesterase inhibitor from Flustra foliacea.Future Pharmacology202331384710.3390/futurepharmacol3010003
    [Google Scholar]
  52. MoriouC. LacroixD. PetekS. El-DemerdashA. TreposR. LeuT.M. FloreanC. DiederichM. HellioC. DebitusC. Al-MourabitA. Bioactive bromotyrosine derivatives from the pacific marine sponge suberea clavata (Pulitzer-Finali, 1982).Mar. Drugs202119314310.3390/md1903014333800819
    [Google Scholar]
  53. GonçalvesK.G. da SilvaL.L. SoaresA.R. RomeiroN.C. Acetylcholinesterase as a target of halogenated marine natural products from Laurencia dendroidea.Algal Res.20205210213010.1016/j.algal.2020.102130
    [Google Scholar]
  54. GrinaF. UllahZ. KaplanerE. MoujahidA. EddohaR. NasserB. TerzioğluP. YilmazM.A. ErtaşA. ÖztürkM. EssamadiA. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds.S. Afr. J. Bot.202012815216010.1016/j.sajb.2019.10.021
    [Google Scholar]
  55. PanH. ZhangJ. WangY. CuiK. CaoY. WangL. WuY. Linarin improves the dyskinesia recovery in Alzheimer’s disease zebrafish by inhibiting the acetylcholinesterase activity.Life Sci.2019222111211610.1016/j.lfs.2019.02.04630802512
    [Google Scholar]
  56. UysalS. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L.Food Chem. Toxicol.20181111525536
    [Google Scholar]
  57. WangI. JaiswalY. WilliamsL. Marine algae as a source of prevention and relief in those with depression and dementia.World J. Pharm. Pharm. Sci.2017682638
    [Google Scholar]
  58. YangC.L. WangY.S. LiuC.L. ZengY.J. ChengP. JiaoR.H. BaoS.X. HuangH.Q. TanR.X. GeH.M. Strepchazolins A and B: Two new alkaloids from a marine Streptomyces chartreusis NA02069.Mar. Drugs201715824410.3390/md1508024428767052
    [Google Scholar]
  59. LoaëcN. AttanasioE. VilliersB. DurieuE. TahtouhT. CamM. DavisR. AlencarA. RouéM. Bourguet-KondrackiM.L. ProkschP. LimantonE. GuiheneufS. CarreauxF. BazureauJ.P. KlautauM. MeijerL. Marine-derived 2-aminoimidazolone alkaloids. Leucettamine b-related polyandrocarpamines inhibit mammalian and protozoan DYRK & CLK kinases.Mar. Drugs2017151031610.3390/md1510031629039762
    [Google Scholar]
  60. BotićT. DefantA. ZaniniP. ŽužekM.C. FrangežR. JanussenD. KerskenD. KnezŽ. ManciniI. SepčićK. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors.Eur. J. Med. Chem.201713613629430410.1016/j.ejmech.2017.05.01928505534
    [Google Scholar]
  61. LeirósM. AlonsoE. RatebM.E. HoussenW.E. EbelR. JasparsM. AlfonsoA. BotanaL.M. Gracilins: Spongionella-derived promising compounds for Alzheimer disease.Neuropharmacology20159328529310.1016/j.neuropharm.2015.02.01525724081
    [Google Scholar]
  62. WuB. OhlendorfB. OeskerV. WieseJ. MalienS. SchmaljohannR. ImhoffJ.F. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458.Mar. Biotechnol. (NY)201517111011910.1007/s10126‑014‑9599‑325108548
    [Google Scholar]
  63. ShouravJ.S. Acetyl and butyryl cholinesterase inhibitory activities of the edible brown algae Eisenia bicyclis.Arch. Pharm. Res.20153881477148710.1007/s12272‑014‑0515‑125370610
    [Google Scholar]
  64. Van MinhC. Van KiemP. Hai DangN. Marine natural products & their potential application in the future.ASEAN Journal on Science and Technology for Development201722429731110.29037/ajstd.167
    [Google Scholar]
  65. HaefnerB. Drugs from the deep: marine natural products as drug candidates.Drug Discov. Today200381253654410.1016/S1359‑6446(03)02713‑212821301
    [Google Scholar]
  66. PotykD. Treatments for Alzheimer disease.South. Med. J.200598662863510.1097/01.SMJ.0000166671.86815.C116004170
    [Google Scholar]
  67. KangS.M. ChaS.H. KoJ.Y. KangM.C. KimD. HeoS.J. KimJ.S. HeuM.S. KimY.T. JungW.K. JeonY.J. Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against H2O2-induced oxidative stress in murine hippocampal HT22 cells.Environ. Toxicol. Pharmacol.20123419610510.1016/j.etap.2012.03.00622465981
    [Google Scholar]
  68. YoonN.Y. ChungH.Y. KimH.R. ChoiJ.S. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera.Fish. Sci.200874120020710.1111/j.1444‑2906.2007.01511.x
    [Google Scholar]
  69. NelsonT.J. Bryostatin Effects on Cognitive Function and PKCɛ in Alzheimer’s Disease Phase IIa and Expanded Access Trials.20171521535
    [Google Scholar]
  70. ManzanoS. AgüeraL. AguilarM. OlazaránJ. A Review on Tramiprosate (Homotaurine) in Alzheimer’s disease and other neurocognitive disorders.Front. Neurol.20201161410.3389/fneur.2020.0061432733362
    [Google Scholar]
  71. AisenP.S. GauthierS. FerrisS.H. SaumierD. HaineD. GarceauD. DuongA. SuhyJ. OhJ. LauW.C. SampalisJ. Tramiprosate in mild-to-moderate Alzheimer’s disease – a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study).Arch. Med. Sci.20111110211110.5114/aoms.2011.2061222291741
    [Google Scholar]
  72. HooijmansC.R. RuttersF. DederenP.J. GambarotaG. VeltienA. van GroenT. BroersenL.M. LütjohannD. HeerschapA. TanilaH. KiliaanA.J. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD).Neurobiol. Dis.2007281162910.1016/j.nbd.2007.06.00717720508
    [Google Scholar]
  73. YassineH.N. BraskieM.N. MackW.J. CastorK.J. FontehA.N. SchneiderL.S. HarringtonM.G. ChuiH.C. Association of docosahexaenoic acid supplementation with alzheimer disease stage in apolipoprotein E epsilon4 carriers: A review.JAMA Neurol.201774333934710.1001/jamaneurol.2016.489928114437
    [Google Scholar]
  74. ArellanesI.C. ChoeN. SolomonV. HeX. KavinB. MartinezA.E. KonoN. BuennagelD.P. HazraN. KimG. D’OrazioL.M. McClearyC. SagareA. ZlokovicB.V. HodisH.N. MackW.J. ChuiH.C. HarringtonM.G. BraskieM.N. SchneiderL.S. YassineH.N. Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial.EBioMedicine20205910288310.1016/j.ebiom.2020.10288332690472
    [Google Scholar]
  75. SaputriL.O. HarahapH.S. RivartiA.W. ZubaidiF.F. Prospecting marine natural products as the disease-modifying treatment of Alzheimer’s Diseases.Biol. Med. Natural Prod. Chem2024132433441
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560329324241203113505
Loading
/content/journals/cpsp/10.2174/0122115560329324241203113505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test