Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and motor dysfunction. The monoamine oxidase B (MAO-B) pathway plays a critical role in the pathogenesis of PD by contributing to neurodegeneration through oxidative stress. Precision medicine offers a transformative approach to PD treatment by leveraging genetic and molecular insights to tailor therapeutic strategies. This review explores the intersection of precision medicine and antipsychotic drugs in modulating the MAO-B pathway to mitigate PD symptoms. We discuss the biochemistry and function of MAO-B, its impact on disease progression, and the potential of genetic profiling to personalize treatment. Additionally, we examine the role of antipsychotic drugs, their mechanisms of action, and their interactions with the MAO-B pathway. The review highlights personalized approaches to MAO-B inhibition and the clinical evidence supporting these strategies. We address the challenges and limitations in implementing precision medicine, such as technical difficulties, drug interactions, and variability in patient responses. Finally, we explore future directions, including advances in precision medicine technologies and emerging therapies and their potential to enhance PD management. This review examines the indirect interaction between antipsychotics and the MAO-B pathway, highlighting how genetic variations and enzyme activity may influence drug efficacy, safety, and potential adverse effects, particularly when combined with MAO-B inhibitors in neuropsychiatric treatments.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560349319250330001147
2025-01-01
2025-09-09
Loading full text...

Full text loading...

References

  1. WamelenD.J.V. RukavinaK. PodlewskaA.M. ChaudhuriK.R. Advances in the pharmacological and non-pharmacological management of non-motor symptoms in Parkinson’s disease: An update since 2017.Curr. Neuropharmacol.20232181786180510.2174/1570159X2066622031516385635293295
    [Google Scholar]
  2. ParambiD.G.T. Treatment of parkinson’s disease by MAO-B inhibitors, new therapies and future challenges-A mini-review.Comb. Chem. High Throughput Screen.202023984786110.2174/138620732366620040209055732238135
    [Google Scholar]
  3. GoudaN.A. ElkamhawyA. ChoJ. Emerging therapeutic strategies for Parkinson’s disease and future prospects: A 2021 update.Biomedicines202210237110.3390/biomedicines1002037135203580
    [Google Scholar]
  4. SöderbomG. Status and future directions of clinical trials in Parkinson’s disease.Int. Rev. Neurobiol.202015415318810.1016/bs.irn.2020.02.00932739003
    [Google Scholar]
  5. SequeiraL. BenfeitoS. FernandesC. LimaI. PeixotoJ. AlvesC. MachadoC.S. GasparA. BorgesF. ChavarriaD. Drug development for Alzheimer’s and Parkinson’s disease: Where do we go now?Pharmaceutics202416670810.3390/pharmaceutics1606070838931832
    [Google Scholar]
  6. PringsheimT. JetteN. FrolkisA. SteevesT.D.L. The prevalence of Parkinson’s disease: A systematic review and meta‐analysis.Mov. Disord.201429131583159010.1002/mds.2594524976103
    [Google Scholar]
  7. LangmiaI.M. JustK.S. YamouneS. BrockmöllerJ. MasimirembwaC. StinglJ.C. CYP2B6 functional variability in drug metabolism and exposure across populations—implication for drug safety, dosing, and individualized therapy.Front. Genet.20211269223410.3389/fgene.2021.69223434322158
    [Google Scholar]
  8. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms2303185135163773
    [Google Scholar]
  9. SivanandyP. LeeyT.C. XiangT.C. LingT.C. Wey HanS.A. SemilanS.L.A. HongP.K. Systematic review on Parkinson’s disease medications, emphasizing on three recently approved drugs to control Parkinson’s symptoms.Int. J. Environ. Res. Public Health202119136410.3390/ijerph1901036435010624
    [Google Scholar]
  10. de BartolomeisA. CiccarelliM. De SimoneG. MazzaB. BaroneA. VellucciL. Canonical and non-canonical antipsychotics’ dopamine-related mechanisms of present and next generation molecules: A systematic review on translational highlights for treatment response and treatment-resistant schizophrenia.Int. J. Mol. Sci.2023246594510.3390/ijms2406594536983018
    [Google Scholar]
  11. WamelenD.J. LetaV. ChaudhuriK.R. JennerP. Future directions for developing non-dopaminergic strategies for the treatment of Parkinson’s disease.Curr. Neuropharmacol.202422101606162010.2174/1570159X2166623073111070937526188
    [Google Scholar]
  12. WitikaB.A. PokaM.S. DemanaP.H. MatafwaliS.K. MelamaneS. Malungelo KhamangaS.M. MakoniP.A. Lipid-based nanocarriers for neurological disorders: A review of the state-of-the-art and therapeutic success to date.Pharmaceutics202214483610.3390/pharmaceutics1404083635456669
    [Google Scholar]
  13. JankovicJ. AguilarL.G. Current approaches to the treatment of Parkinson’s disease.Neuropsychiatr. Dis. Treat.20084474375710.2147/NDT.S200619043519
    [Google Scholar]
  14. Muleiro AlvarezM. Cano-HerreraG. Osorio MartínezM.F. Vega Gonzales-PortilloJ. MonroyG.R. Murguiondo PérezR. Torres-RíosJ.A. van TienhovenX.A. Garibaldi BernotE.M. Esparza SalazarF. IbarraA. A comprehensive approach to Parkinson’s disease: Addressing its molecular, clinical, and therapeutic aspects.Int. J. Mol. Sci.20242513718310.3390/ijms2513718339000288
    [Google Scholar]
  15. NaoiM. MaruyamaW. Shamoto-NagaiM. Neuroprotective function of rasagiline and selegiline, inhibitors of type B monoamine oxidase, and role of monoamine oxidases in synucleinopathies.Int. J. Mol. Sci.202223191105910.3390/ijms23191105936232361
    [Google Scholar]
  16. BesadaP. ViñaD. CostasT. Costas-LagoM.C. VilaN. Torres-TeránI. SturleseM. MoroS. TeránC. Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors.Bioorg. Chem.202111510520310.1016/j.bioorg.2021.10520334371375
    [Google Scholar]
  17. DauerW. PrzedborskiS. Parkinson’s disease.Neuron200339688990910.1016/S0896‑6273(03)00568‑312971891
    [Google Scholar]
  18. Dong-ChenX. YongC. YangX. Chen-YuS. Li-HuaP. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.2023817310.1038/s41392‑023‑01353‑336810524
    [Google Scholar]
  19. JostW.H. A critical appraisal of MAO-B inhibitors in the treatment of Parkinson’s disease.J. Neural Transm.20221295-672373610.1007/s00702‑022‑02465‑w35107654
    [Google Scholar]
  20. YangX. FengP. JiR. RenY. WeiW. HölscherC. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson’s disease.Expert Opin. Ther. Targets202226544546010.1080/14728222.2022.207949235584372
    [Google Scholar]
  21. DuarteP. MichalskaP. CrismanE. CuadradoA. LeónR. Novel series of dual NRF2 inducers and selective MAO-B inhibitors for the treatment of Parkinson’s disease.Antioxidants202211224710.3390/antiox1102024735204129
    [Google Scholar]
  22. NissankaN. MoraesC.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease.FEBS Lett.2018592572874210.1002/1873‑3468.1295629281123
    [Google Scholar]
  23. IsikS. Yeman KiyakB. AkbayirR. SeyhaliR. ArpaciT. Microglia mediated neuroinflammation in Parkinson’s disease.Cells2023127101210.3390/cells1207101237048085
    [Google Scholar]
  24. RibaričS. The contribution of type 2 diabetes to Parkinson’s disease Aetiology.Int. J. Mol. Sci.2024258435810.3390/ijms2508435838673943
    [Google Scholar]
  25. ChandraS. GallardoG. Fernández-ChacónR. SchlüterO.M. SüdhofT.C. α-synuclein cooperates with CSPalpha in preventing neurodegeneration.Cell2005123338339610.1016/j.cell.2005.09.02816269331
    [Google Scholar]
  26. PolymeropoulosMH LavedanC LeroyE IdeSE DehejiaA DutraA PikeB RootH RubensteinJ BoyerR StenroosES Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.Science199727653212045204710.1126/science.276.5321.20459197268
    [Google Scholar]
  27. SingletonAB FarrerM JohnsonJ SingletonA HagueS KachergusJ HulihanM PeuralinnaT DutraA NussbaumR LincolnS alpha-Synuclein locus triplication causes Parkinson’s disease.Science2003302564684110.1126/science.109027814593171
    [Google Scholar]
  28. OueslatiA. Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: What have we learned in the last decade?J. Parkinsons Dis.201661395110.3233/JPD‑16077927003784
    [Google Scholar]
  29. StefanisL. α-Synuclein in Parkinson’s disease.Cold Spring Harb. Perspect. Med.201222a00939910.1101/cshperspect.a00939922355802
    [Google Scholar]
  30. CollinsF.S. VarmusH. A new initiative on precision medicine.N. Engl. J. Med.2015372979379510.1056/NEJMp150052325635347
    [Google Scholar]
  31. AytaçE. ÖzerL. BacaB. BalikE. KapranY. TaşkınO.C. Oyan UluçB. AbacıoğluM.U. GönençM. BölükbaşıY. ÇilB.E. BaranB. AygünC. YildizM.E. ÜnalK. ErkolB. YaltiT. ÖzbekU. AttilaT. TözünN. GürsesB. ErdamarS. ErO. BeşeN. BilgeO. CeyhanG.O. MandelN.M. SelekU. YakicierC. Kayserili KarabeyH. SaruçM. ÖzbenV. EsenE. ÖzoranE. VardereliE. GünerL. HamzaoğluI. BuğraD. KarahasanoğluT. GroupT.I. Optimizing the personalized care for the management of rectal cancer: A consensus statement.Turk. J. Gastroenterol.202233862766310.5152/tjg.2022.21110335993526
    [Google Scholar]
  32. GuttmacherA.E. CollinsF.S. Genomic medicine--A primer.N. Engl. J. Med.2002347191512152010.1056/NEJMra01224012421895
    [Google Scholar]
  33. KonnoT. RossO.A. PuschmannA. DicksonD.W. WszolekZ.K. Autosomal dominant Parkinson’s disease caused by SNCA duplications.Parkinsonism Relat. Disord.201622Suppl 1Suppl. 1S1S610.1016/j.parkreldis.2015.09.00726350119
    [Google Scholar]
  34. JankovicJ. TanE.K. Parkinson’s disease: Etiopathogenesis and treatment.J. Neurol. Neurosurg. Psychiatry202091879580810.1136/jnnp‑2019‑32233832576618
    [Google Scholar]
  35. FabbriM. RascolO. FoltynieT. CarrollC. PostumaR.B. PorcherR. CorvolJ.C. Advantages and challenges of platform trials for disease modifying therapies in Parkinson’s disease.Mov. Disord.20243991468147710.1002/mds.2989938925541
    [Google Scholar]
  36. WishartD.S. Emerging applications of metabolomics in drug discovery and precision medicine.Nat. Rev. Drug Discov.201615747348410.1038/nrd.2016.3226965202
    [Google Scholar]
  37. HebertL.E. WeuveJ. ScherrP.A. EvansD.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census.Neurology201380191778178310.1212/WNL.0b013e31828726f523390181
    [Google Scholar]
  38. GinsburgG.S. PhillipsK.A. Precision medicine: from science to value.Health Aff.201837569470110.1377/hlthaff.2017.162429733705
    [Google Scholar]
  39. RellingM.V. EvansW.E. Pharmacogenomics in the clinic.Nature2015526757334335010.1038/nature1581726469045
    [Google Scholar]
  40. Pham NguyenT.P. AbrahamD.S. ThibaultD. WeintraubD. WillisA.W. Low continuation of antipsychotic therapy in Parkinson disease – Intolerance, ineffectiveness, or inertia?BMC Neurol.202121124010.1186/s12883‑021‑02265‑x34167473
    [Google Scholar]
  41. DruschkyK. BleichS. GrohmannR. EngelR.R. TotoS. NeyaziA. DäublB. StübnerS. Severe parkinsonism under treatment with antipsychotic drugs.Eur. Arch. Psychiatry Clin. Neurosci.20202701354710.1007/s00406‑019‑01060‑731444566
    [Google Scholar]
  42. SarkarS. RaymickJ. ImamS. Neuroprotective and therapeutic strategies against Parkinson’s disease: Recent perspectives.Int. J. Mol. Sci.201617690410.3390/ijms1706090427338353
    [Google Scholar]
  43. OlfsonM. BlancoC. WangS. LajeG. CorrellC.U. National trends in the mental health care of children, adolescents, and adults by office-based physicians.JAMA Psychiatry2014711819010.1001/jamapsychiatry.2013.307424285382
    [Google Scholar]
  44. De SimoneG. MazzaB. VellucciL. BaroneA. CiccarelliM. de BartolomeisA. Schizophrenia synaptic pathology and antipsychotic treatment in the framework of oxidative and mitochondrial dysfunction: Translational highlights for the clinics and treatment.Antioxidants202312497510.3390/antiox1204097537107350
    [Google Scholar]
  45. PowellA. MatarE. LewisS.J.G. Treating hallucinations in Parkinson’s disease.Expert Rev. Neurother.202222645546810.1080/14737175.2021.185119833183105
    [Google Scholar]
  46. WuJ. JinX. XieW. LiuL. WangF. ZhuL. ShenY. QiuL. Global research trends and hotspots in Parkinson’s disease psychosis: A 25-year bibliometric and visual analysis.Front. Aging Neurosci.202416148023410.3389/fnagi.2024.148023439649718
    [Google Scholar]
  47. PapagiouvannisG. Theodosis-NobelosP. RekkaE.A. A review on therapeutic strategies against Parkinson’s disease: Current trends and future perspectives.Mini Rev. Med. Chem.20252529611110.2174/011389557530378824060605462038918988
    [Google Scholar]
  48. MüllerT. GerlachM. HefnerG. HiemkeC. JostW.H. RiedererP. Therapeutic drug monitoring in Parkinson’s disease.J. Neural Transm.2024131101247126210.1007/s00702‑024‑02828‑539227478
    [Google Scholar]
  49. CsotiI. HerbstH. UrbanP. WoitallaD. WüllnerU. Polypharmacy in Parkinson’s disease: Risks and benefits with little evidence.J. Neural Transm.2019126787187810.1007/s00702‑019‑02026‑831222606
    [Google Scholar]
  50. RegensburgerM. IpC.W. KohlZ. SchraderC. UrbanP.P. KassubekJ. JostW.H. Clinical benefit of MAO-B and COMT inhibition in Parkinson’s disease: Practical considerations.J. Neural Transm.2023130684786110.1007/s00702‑023‑02623‑836964457
    [Google Scholar]
  51. WeintraubD. AarslandD. ChaudhuriK.R. DobkinR.D. LeentjensA.F.G. Rodriguez-ViolanteM. SchragA. The neuropsychiatry of Parkinson’s disease: Advances and challenges.Lancet Neurol.20222118910210.1016/S1474‑4422(21)00330‑634942142
    [Google Scholar]
  52. PrattD.N. AberizkK. GuestR.M. WilliamsT.F. BilgramiZ. KarpE.L. WalkerE.F. MittalV.A. Schizophrenia spectrum and other psychotic disorders.PsychopathologyRoutledge2024483530
    [Google Scholar]
  53. WagnerE. SiafisS. FernandoP. FalkaiP. HonerW.G. RöhA. SiskindD. LeuchtS. HasanA. Efficacy and safety of clozapine in psychotic disorders—A systematic quantitative meta-review.Transl. Psychiatry202111148710.1038/s41398‑021‑01613‑234552059
    [Google Scholar]
  54. XiangL. WangY. LiuS. LiuB. JinX. CaoX. Targeting protein aggregates with natural products: An optional strategy for neurodegenerative diseases.Int. J. Mol. Sci.202324141127510.3390/ijms24141127537511037
    [Google Scholar]
  55. SampaioT.F. dos SantosE.U.D. de LimaG.D.C. dos AnjosR.S.G. da SilvaR.C. AsanoA.G.C. AsanoN.M.J. CrovellaS. de SouzaP.R.E. MAO‐B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease.J. Clin. Pharmacol.201858792092610.1002/jcph.109629578580
    [Google Scholar]
  56. LiuQ.Q. WuG.H. WangX.C. XiongX.W. Rui-Wang YaoB.L. The role of Foxo3a in neuron-mediated cognitive impairment.Front. Mol. Neurosci.202417142456110.3389/fnmol.2024.142456138962803
    [Google Scholar]
  57. TangY. JuW. LiuY. DengQ. The role of SIRT1 in autophagy and drug resistance: Unveiling new targets and potential biomarkers in cancer therapy.Front. Pharmacol.202415146983010.3389/fphar.2024.146983039403142
    [Google Scholar]
  58. AbbaraA. EngP.C. PhylactouM. ClarkeS.A. RichardsonR. SykesC.M. PhumsatitpongC. MillsE. ModiM. Izzi-EngbeayaC. PapadopoulouD. PuruggananK. JayasenaC.N. WebberL. SalimR. OwenB. BechP. ComninosA.N. McArdleC.A. VoliotisM. Tsaneva-AtanasovaK. MoenterS. HanyalogluA. DhilloW.S. Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders.J. Clin. Invest.2020130126739675310.1172/JCI13968133196464
    [Google Scholar]
  59. FuchsF.D. WheltonP.K. High blood pressure and cardiovascular disease.Hypertension202075228529210.1161/HYPERTENSIONAHA.119.1424031865786
    [Google Scholar]
  60. VuicB. MilosT. TudorL. Nikolac PerkovicM. KonjevodM. Nedic ErjavecG. FarkasV. UzunS. MimicaN. Svob StracD. Pharmacogenomics of Dementia: Personalizing the treatment of cognitive and neuropsychiatric symptoms.Genes20231411204810.3390/genes1411204838002991
    [Google Scholar]
  61. CrisanL. IstrateD. BoraA. PacureanuL. Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for Parkinson’s disease treatment.Mol. Divers.20212531775179410.1007/s11030‑020‑10155‑633237524
    [Google Scholar]
  62. HöllerhageM. BecktepeJ. ClassenJ. DeuschlG. EbersbachG. HopfnerF. LingorP. LöhleM. MaaßS. Pötter-NergerM. OdinP. WoitallaD. BährM. BergD. BrockmannK. BuhmannC. Ceballos-BaumannA. ClaßenJ. DeuschlC. DodelR. EggersC. van EimerenT. FanciulliA. FimmB. FolkertsA-K. GausepohlM. HasanA. HermannW. Hilker-RoggendorfR. HöglingerG. JostW. KalbeE. KassubekJ. KlebeS. KleinC. KlietzM. KöglspergerT. KühnA. KrackP. KrismerF. KuhlenbäumerG. LevinJ. Liepelt-ScarfoneI. LoewenbrückK. LorenzlS. MaetzlerW. MenzelR. MeyerP.T. MollenhauerB. NeumannM. OuteiroT. ReeseR. ReetzK. RießO. RufV. SchneiderA. SchraderC. SchnitzlerA. SeppiK. Sixel-DöringF. StorchA. TöngesL. van EimerenT. WalterU. WächterT. WarneckeT. WegnerF. WinklerC. WittK. ZeunerK. TrenkwalderC. HöglingerG.U. Pharmacotherapy of motor symptoms in early and mid-stage Parkinson’s disease: Guideline “Parkinson’s disease” of the German society of neurology.J. Neurol.2024271117071710110.1007/s00415‑024‑12632‑639207521
    [Google Scholar]
  63. LegatiA. GhezziD. Parkinson’s Disease, Parkinsonisms, and Mitochondria: The role of nuclear and mitochondrial DNA.Curr. Neurol. Neurosci. Rep.202323413114710.1007/s11910‑023‑01260‑836881253
    [Google Scholar]
  64. NahidN.A. JohnsonJ.A. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine.Expert Opin. Drug Metab. Toxicol.2022181176978510.1080/17425255.2022.216031736597259
    [Google Scholar]
  65. HockingsJ.K. PasternakA.L. ErwinA.L. MasonN.T. EngC. HicksJ.K. Pharmacogenomics: An evolving clinical tool for precision medicine.Cleve. Clin. J. Med.2020872919910.3949/ccjm.87a.1907332015062
    [Google Scholar]
  66. AngelopoulouE. BougeaA. PapageorgiouS.G. VillaC. Psychosis in Parkinson’s disease: A lesson from genetics.Genes2022136109910.3390/genes1306109935741861
    [Google Scholar]
  67. MoschnyN. HefnerG. GrohmannR. EckermannG. MaierH.B. SeifertJ. HeckJ. FrancisF. BleichS. TotoS. MeissnerC. Therapeutic drug monitoring of second-and third-generation antipsychotic drugs—influence of smoking behavior and inflammation on pharmacokinetics.Pharmaceuticals202114651410.3390/ph1406051434071813
    [Google Scholar]
  68. YamadaM. YasuharaH. Clinical pharmacology of MAO inhibitors: Safety and future.Neurotoxicology2004251-221522110.1016/S0161‑813X(03)00097‑414697896
    [Google Scholar]
  69. Rani Khan Divyam Maheshwari Sunny Chauhan Chandan Kumar Ishika Antil Shalu Sharma Yashika Garg Prince Chauhan Shamim JhaS.K. Exploring the potential therapeutic value of Solanum lycopersicum L. phytoconstituents for Parkinson’s disease through molecular docking analysis.WJARR202320248850110.30574/wjarr.2023.20.2.2279
    [Google Scholar]
  70. BainbridgeJ.L. Lee PageR.II RuscinJ.M. Elucidating the mechanism of action and potential interactions of MAO-B inhibitors.Neurol. Clin.2008263Suppl.8596, vi10.1016/j.ncl.2008.05.00218774444
    [Google Scholar]
  71. AngelopoulouE. StanitsaE. KarpodiniC.C. BougeaA. KontaxopoulouD. FragkiadakiS. KorosC. GeorgakopoulouV.E. FotakopoulosG. KoutedakisY. PiperiC. PapageorgiouS.G. Pharmacological and non-pharmacological treatments for depression in Parkinson’s disease: An updated review.Medicina2023598145410.3390/medicina5908145437629744
    [Google Scholar]
  72. FerrariM. GodioM. MartiniS. CallegariC. CosentinoM. MarinoF. Effect of quetiapine on inflammation and immunity: A systematic review.Int. J. Psychiatry Clin. Pract.202327219620710.1080/13651501.2022.210192835913757
    [Google Scholar]
  73. LotanA. LuzaS. OpazoC.M. AytonS. LaneD.J.R. MancusoS. PereiraA. SundramS. WeickertC.S. BousmanC. PantelisC. EverallI.P. BushA.I. Perturbed iron biology in the prefrontal cortex of people with schizophrenia.Mol. Psychiatry20232852058207010.1038/s41380‑023‑01979‑336750734
    [Google Scholar]
  74. GammonD. ChengC. VolkovinskaiaA. BakerG.B. DursunS.M. Clozapine: why is it so uniquely effective in the treatment of a range of neuropsychiatric disorders?Biomolecules2021117103010.3390/biom1107103034356654
    [Google Scholar]
  75. HamamahS. AghazarianA. NazaryanA. HajnalA. CovasaM. Role of microbiota-gut-brain axis in regulating dopaminergic signaling.Biomedicines202210243610.3390/biomedicines1002043635203645
    [Google Scholar]
  76. KhouryM.J. BowenS. DotsonW.D. DrzymallaE. GreenR.F. GoldsteinR. KolorK. LiburdL.C. SperlingL.S. BunnellR. Health equity in the implementation of genomics and precision medicine: A public health imperative.Genet. Med.20222481630163910.1016/j.gim.2022.04.00935482015
    [Google Scholar]
  77. PirmohamedM. Pharmacogenomics: Current status and future perspectives.Nat. Rev. Genet.202324635036210.1038/s41576‑022‑00572‑836707729
    [Google Scholar]
  78. GreenE.D. GuyerM.S. Charting a course for genomic medicine from base pairs to bedside.Nature2011470733320421310.1038/nature0976421307933
    [Google Scholar]
  79. LiuW.Y. ChienC.W. TungT.H. Healthcare practice strategies for integrating personalized medicine: Management of COVID-19.World J. Clin. Cases20219298647865710.12998/wjcc.v9.i29.864734734043
    [Google Scholar]
  80. UnderdahlL. DitriM. DuthelyL. Physician burnout: Evidence-based roadmaps to prioritizing and supporting personal wellbeing.J. Healthc. Leadersh.202416152710.2147/JHL.S38924538192639
    [Google Scholar]
  81. StenzingerA. MoltzenE.K. WinklerE. Molnar-GaborF. MalekN. CostescuA. JensenB.N. NowakF. PintoC. OttersenO.P. SchirmacherP. NordborgJ. SeufferleinT. FröhlingS. EdsjöA. Garcia-FoncillasJ. NormannoN. LundgrenB. FriedmanM. BolanosN. Tatton-BrownK. HillS. RosenquistR. Implementation of precision medicine in healthcare—A European perspective.J. Intern. Med.2023294443745410.1111/joim.1369837455247
    [Google Scholar]
  82. OnyeakaH.K. BeachS.R. HuffmanJ.C. SternT.A. Side Effects of Psychotropic Medications.Massachusetts General Hospital Psychopharmacology and NeurotherapeuticsElsevier2024130144
    [Google Scholar]
  83. EliasE. ZhangA.Y. MannersM.T. Novel pharmacological approaches to the treatment of depression.Life202212219610.3390/life1202019635207483
    [Google Scholar]
  84. MuenchJ. HamerA.M. Adverse effects of antipsychotic medications.Am. Fam. Physician201081561762220187598
    [Google Scholar]
  85. FarvoldenP. KennedyS.H. LamR.W. Recent developments in the psychobiology and pharmacotherapy of depression: Optimising existing treatments and novel approaches for the future.Expert Opin. Investig. Drugs2003121658610.1517/13543784.12.1.6512517255
    [Google Scholar]
  86. LeonardH. BlauwendraatC. KrohnL. FaghriF. IwakiH. FergusonG. Day-WilliamsA.G. StoneD.J. SingletonA.B. NallsM.A. Gan-OrZ. Genetic variability and potential effects on clinical trial outcomes: Perspectives in Parkinson’s disease.J. Med. Genet.202057533133810.1136/jmedgenet‑2019‑10628331784483
    [Google Scholar]
  87. WangR.C. WangZ. Precision medicine: Disease subtyping and tailored treatment.Cancers20231515383710.3390/cancers1515383737568653
    [Google Scholar]
  88. StracciaG. ColucciF. EleopraR. CiliaR. Precision medicine in Parkinson’s disease: From genetic risk signals to personalized therapy.Brain Sci.20221210130810.3390/brainsci1210130836291241
    [Google Scholar]
  89. EspayA.J. BonatoP. NahabF.B. MaetzlerW. DeanJ.M. KluckenJ. EskofierB.M. MerolaA. HorakF. LangA.E. ReilmannR. GiuffridaJ. NieuwboerA. HorneM. LittleM.A. LitvanI. SimuniT. DorseyE.R. BurackM.A. KubotaK. KamondiA. GodinhoC. DaneaultJ.F. MitsiG. KrinkeL. HausdorffJ.M. BloemB.R. PapapetropoulosS. Technology in Parkinson’s disease: Challenges and opportunities.Mov. Disord.20163191272128210.1002/mds.2664227125836
    [Google Scholar]
  90. GaoQ. ZhangZ. ZhaoC. WangZ. HuoY. XiangD. JiaC. GuoX. Single-molecule characterization from the perspective of optics, photonics, and optoelectronics: A review.Adv. Photonics20246606400210.1117/1.AP.6.6.064002
    [Google Scholar]
  91. XiaoY. PowellD.W. LiuX. LiQ. Cardiovascular manifestations of inflammatory bowel diseases and the underlying pathogenic mechanisms.Am. J. Physiol. Regul. Integr. Comp. Physiol.20233252R193R21110.1152/ajpregu.00300.202237335014
    [Google Scholar]
  92. SiddiquiS.S. LoganathanS. ElangovanV.R. AliM.Y. A Handbook of Artificial Intelligence in Drug Delivery.Academic Press2023531569
    [Google Scholar]
  93. LiL. HernandezC.C. GimenezL.E. XuB. DahirN.S. Functional coupling between MC4R and Kir7. 1 contributes to clozapine-induced hyperphagia.bioRxiv20242024-06
    [Google Scholar]
  94. BrassoC. ColliG. SgroR. BellinoS. BozzatelloP. MontemagniC. VillariV. RoccaP. Efficacy of serotonin and dopamine activity modulators in the treatment of negative symptoms in Schizophrenia: A rapid review.Biomedicines202311392110.3390/biomedicines1103092136979900
    [Google Scholar]
  95. HassanM. AmirA. ShahzadiS. KloczkowskiA. Therapeutic implications of microRNAs in depressive disorders: A review.Int. J. Mol. Sci.202223211353010.3390/ijms23211353036362315
    [Google Scholar]
  96. Hossein-KhannazerN. VosoughM. SalahiS. MousaviM.A. AziziG. Stem cell-based and advanced therapeutic modalities for parkinson’s disease: A risk-effectiveness patient-centered analysis.Curr. Neuropharmacol.202220122320234510.2174/1570159X2066622020110023835105291
    [Google Scholar]
  97. ZahoorI. ShafiA. HaqE. Pharmacological treatment of Parkinson’s disease.Parkinson’s Disease: Pathogenesis and Clinical AspectsExon Publications2018129144
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560349319250330001147
Loading
/content/journals/cpsp/10.2174/0122115560349319250330001147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test