Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Despite the availability of numerous anti-hyperglycemic and psychoactive drugs, and diverse therapeutic modalities, prevention and cure of diabetes-associated mental health problems continue to be a major challenge for medical practitioners. Considerable efforts have been made in many research laboratories, including ours, to identify the bioactive of traditionally known medicinal or food plants to identify their bioactive that could be used for the treatment of diabetes and comorbidities in metabolic disorders. (Burm. F.) Wall. Ex. Nees. has been used in Ayurvedic and other traditionally known healthcare systems of India and many other Asian countries. Due to its extremely bitter taste, it is often referred to as the “king of bitters” and commonly known as “Kalmegh”. Andrographolide is one such metabolite of used in many Asiatic countries for the treatment of diverse age and lifestyle-associated chronic diseases now used for discovering and developing anti-diabetic and other drugs. Available data on andrographolide and strongly recommend that they could be better therapeutic choices for the prevention of diabetes and associated mental health problems than metformin and other pharmacotherapeutics currently commercialized for such purposes. However, the question of whether andrographolide or extracts of the plant enriched in it could be better suited for such purposes remains open. Currently, available quantitative data on their anti-hyperglycemic effects and brain function-modulating effects useful for answering this question are discussed in this report in light of our current knowledge of the role of gut microbiota in regulating glucose homeostasis and mental health. Their potential uses for discovering and developing drugs or phytotherapeutics from them are also pointed out.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560321901241210082616
2025-01-01
2025-09-09
Loading full text...

Full text loading...

References

  1. WildS. RoglicG. GreenA. SicreeR. KingH. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.Diabetes Care20042751047105310.2337/diacare.27.5.104715111519
    [Google Scholar]
  2. ShawJ.E. SicreeR.A. ZimmetP.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087141410.1016/j.diabres.2009.10.00719896746
    [Google Scholar]
  3. StandlE. KhuntiK. HansenT.B. SchnellO. The global epidemics of diabetes in the 21st century: Current situation and perspectives.Eur. J. Prev. Cardiol.201926Suppl 271410.1177/204748731988102131766915
    [Google Scholar]
  4. ChanJ.C.N. MalikV. JiaW. KadowakiT. YajnikC.S. YoonK.H. HuF.B. Diabetes in Asia: Epidemiology, risk factors, and pathophysiology.JAMA2009301202129214010.1001/jama.2009.72619470990
    [Google Scholar]
  5. RamachandranA. Wan MaR.C. SnehalathaC. Diabetes in Asia.Lancet2010375971240841810.1016/S0140‑6736(09)60937‑519875164
    [Google Scholar]
  6. MarlesR.J. FarnsworthN.R. Antidiabetic plants and their active constituents.Phytomedicine19952213718910.1016/S0944‑7113(11)80059‑023196156
    [Google Scholar]
  7. OubréA.Y. CarlsonT.J. KingS.R. ReavenG.M. From plant to patient: An ethnomedical approach to the identification of new drugs for the treatment of NIDDM.Diabetologia199740561461710.1007/s0012500507249165233
    [Google Scholar]
  8. LaMoiaT.E. ShulmanG.I. Cellular and molecular mechanisms of metformin action.Endocr. Rev.2021421779610.1210/endrev/bnaa02332897388
    [Google Scholar]
  9. MukherjeeP.K. MaitiK. MukherjeeK. HoughtonP.J. Leads from Indian medicinal plants with hypoglycemic potentials.J. Ethnopharmacol.2006106112810.1016/j.jep.2006.03.02116678368
    [Google Scholar]
  10. NyakudyaT.T. TshabalalaT. DangarembiziR. ErlwangerK.H. NdhlalaA.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders.Molecules20202511266910.3390/molecules2511266932526850
    [Google Scholar]
  11. RíosJ. FranciniF. SchinellaG. Natural products for the treatment of type 2 diabetes mellitus.Planta Med.20158112/1397599410.1055/s‑0035‑154613126132858
    [Google Scholar]
  12. SunN.N. WuT.Y. ChauC.F. Natural dietary and herbal products in anti-obesity treatment.Molecules20162110135110.3390/molecules2110135127727194
    [Google Scholar]
  13. GaikwadS.B. MohanG.K. RaniM.S. Phytochemicals for diabetes management.Pharm. Crop.20145112810.2174/2210290601405010011
    [Google Scholar]
  14. HostalekU. GwiltM. HildemannS. Therapeutic use of metformin in prediabetes and diabetes prevention.Drugs201575101071109410.1007/s40265‑015‑0416‑826059289
    [Google Scholar]
  15. TopW.M.C. KooyA. StehouwerC.D.A. Metformin: A narrative review of its potential benefits for cardiovascular disease, cancer and dementia.Pharmaceuticals (Basel)202215331210.3390/ph1503031235337110
    [Google Scholar]
  16. VieiraI.H. BarrosL.M. BaptistaC.F. RodriguesD.M. PaivaI.M. Recommendations for practical use of metformin, a central pharmacological therapy in type 2 diabetes.Clin. Diabetes20224019710710.2337/cd21‑004335221479
    [Google Scholar]
  17. BouchouchaM. UzzanB. CohenR. Metformin and digestive disorders.Diabetes Metab.2011372909610.1016/j.diabet.2010.11.00221236717
    [Google Scholar]
  18. BakerC. Retzik-StahrC. SinghV. PlomondonR. AndersonV. RasouliN. Should metformin remain the first-line therapy for treatment of type 2 diabetes?Ther. Adv. Endocrinol. Metab.202112204201882098022510.1177/204201882098022533489086
    [Google Scholar]
  19. IronsB. MinzeM. Drug treatment of type 2 diabetes mellitus in patients for whom metformin is contraindicated.Diabetes Metab. Syndr. Obes.20147152410.2147/DMSO.S3875324465132
    [Google Scholar]
  20. McCreightL.J. BaileyC.J. PearsonE.R. Metformin and the gastrointestinal tract.Diabetologia201659342643510.1007/s00125‑015‑3844‑926780750
    [Google Scholar]
  21. SivadasanS. SubramanianM. AiyaluR. Metformin: Pros and cons.Metformin - Pharmacology and Drug Interactions AkhtarJ. AhmadU. BadruddeenB. KhanM. LondonIntechOpen202110.5772/intechopen.99815
    [Google Scholar]
  22. O’MorainN. O’MorainC. The burden of digestive disease across Europe: Facts and policies.Dig. Liver Dis.20195111310.1016/j.dld.2018.10.00130442520
    [Google Scholar]
  23. SperberA.D. BangdiwalaS.I. DrossmanD.A. GhoshalU.C. SimrenM. TackJ. WhiteheadW.E. DumitrascuD.L. FangX. FukudoS. KellowJ. OkekeE. QuigleyE.M.M. SchmulsonM. WhorwellP. ArchampongT. AdibiP. AndresenV. BenningaM.A. BonazB. BorS. FernandezL.B. ChoiS.C. CorazziariE.S. FrancisconiC. HaniA. LazebnikL. LeeY.Y. MulakA. RahmanM.M. SantosJ. SetshediM. SyamA.F. VannerS. WongR.K. Lopez-ColomboA. CostaV. DickmanR. KanazawaM. KeshteliA.H. KhatunR. MalekiI. PoitrasP. PratapN. StefanyukO. ThomsonS. ZeevenhoovenJ. PalssonO.S. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study.Gastroenterology2021160199114.e310.1053/j.gastro.2020.04.01432294476
    [Google Scholar]
  24. MaratheC.S. RaynerC.K. WuT. JonesK.L. HorowitzM. Gastrointestinal disorders in diabetes.EndotextSouth Dartmouth, MAMDText.com, Inc. FeingoldK.R. AnawaltB. BoyceA. ChrousosG. de HerderW.W. DhatariyaK. 200031986000
    [Google Scholar]
  25. BjelakovicG. AleksandarN. IvankaS. Benedeto-StojanovD. MarijaB. BratislavP. SlobodanA. Diabetes mellitus and digestive disorders.Acta Facultatis Medicae Naissensis20052214350
    [Google Scholar]
  26. Díaz-PerdigonesC.M. Muñoz-GarachA. Álvarez-BermúdezM.D. Moreno-IndiasI. TinahonesF.J. Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients.Biomed. Pharmacother.202214511244810.1016/j.biopha.2021.11244834844104
    [Google Scholar]
  27. LeeC.B. ChaeS.U. JoS.J. JerngU.M. BaeS.K. The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus.Int. J. Mol. Sci.2021227356610.3390/ijms2207356633808194
    [Google Scholar]
  28. VallianouN.G. StratigouT. TsagarakisS. Metformin and gut microbiota: Their interactions and their impact on diabetes.Hormones (Athens)201918214114410.1007/s42000‑019‑00093‑w30719628
    [Google Scholar]
  29. GurungM. LiZ. YouH. RodriguesR. JumpD.B. MorgunA. ShulzhenkoN. Role of gut microbiota in type 2 diabetes pathophysiology.EBioMedicine20205110259010.1016/j.ebiom.2019.11.05131901868
    [Google Scholar]
  30. LiW.Z. StirlingK. YangJ.J. ZhangL. Gut microbiota and diabetes: From correlation to causality and mechanism.World J. Diabetes202011729330810.4239/wjd.v11.i7.29332843932
    [Google Scholar]
  31. AdeshirlarijaneyA. GewirtzA.T. Considering gut microbiota in treatment of type 2 diabetes mellitus.Gut Microbes202011325326410.1080/19490976.2020.171771932005089
    [Google Scholar]
  32. he YangF.Q. TangP. GaoT.H. YangC.X. TanL. YueP. HuaY.N. LiuS.J. GuoJ.L. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus.Biomed. Pharmacother.202215111309110.1016/j.biopha.2022.11309135576662
    [Google Scholar]
  33. ZhangB. YueR. ChenY. YangM. HuangX. ShuiJ. PengY. ChinJ. Gut microbiota, a potential new target for chinese herbal medicines in treating diabetes mellitus.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/263489830906411
    [Google Scholar]
  34. ZhengY. GouX. ZhangL. GaoH. WeiY. YuX. PangB. TianJ. TongX. LiM. Interactions between gut microbiota, host, and herbal medicines: A review of new insights into the pathogenesis and treatment of type 2 diabetes.Front. Cell. Infect. Microbiol.20201036010.3389/fcimb.2020.0036032766169
    [Google Scholar]
  35. HossainM.S. UrbiZ. SuleA. RahmanK.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology.ScientificWorldJournal2014201412810.1155/2014/27490525950015
    [Google Scholar]
  36. SubramanianR. AsmawiM.Z. SadikunA. Effect of Andrographolide and Ethanol Extract of Andrographis paniculata on Liver Glycolytic, Gluconeogenic, and Lipogenic Enzymes in a Type 2 Diabetic Rat Model.Pharm. Biol.20084610-1177278010.1080/13880200802316079
    [Google Scholar]
  37. KomalasariT. HarimurtiS. A review of the anti-diabetic activity of Andrographis paniculata (Burm. f.) nees based in-vivo study.Int. J. Public Health Sci.201544256[IJPHS].
    [Google Scholar]
  38. ThakurA.K. ChatterjeeS.S. KumarV. Adaptogenic potential of andrographolide: An active principle of the king of bitters (Andrographis paniculata).J. Tradit. Complement. Med.201551425010.1016/j.jtcme.2014.10.00226151008
    [Google Scholar]
  39. KumarS. SinghB. BajpaiV. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance.J. Ethnopharmacol.202127511405410.1016/j.jep.2021.11405433831465
    [Google Scholar]
  40. SubramanianR. Zaini AsmawiM. SadikunA. A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata.Phytochem. Rev.2012111397510.1007/s11101‑011‑9219‑z
    [Google Scholar]
  41. KishoreV. YarlaN. BishayeeA. PuttaS. MallaR. NeelapuN. ChallaS. DasS. ShiralgiY. HegdeG. DhananjayaB. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents.Curr. Top. Med. Chem.201717884585710.2174/156802661666616092715045227697058
    [Google Scholar]
  42. ZengB. WeiA. ZhouQ. YuanM. LeiK. LiuY. SongJ. GuoL. YeQ. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches.Phytother. Res.202236133636410.1002/ptr.732434818697
    [Google Scholar]
  43. IslamM.T. Andrographolide, a new hope in the prevention and treatment of metabolic syndrome.Front. Pharmacol.2017857110.3389/fphar.2017.0057128878680
    [Google Scholar]
  44. ZhangH. LiS. SiY. XuH. Andrographolide and its derivatives: Current achievements and future perspectives.Eur. J. Med. Chem.202122411371010.1016/j.ejmech.2021.11371034315039
    [Google Scholar]
  45. MandalS.C. DharaA.K. MaitiB.C. Studies on psychopharmacological activity of Andrographis paniculata extract.Phytother. Res.200115325325610.1002/ptr.70411351363
    [Google Scholar]
  46. ChanS.J. WongW.S.F. WongP.T.H. BianJ.S. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia.Br. J. Pharmacol.2010161366867910.1111/j.1476‑5381.2010.00906.x20880404
    [Google Scholar]
  47. RadhikaP. AnnapurnaA. RaoS.N. Immunostimulant, cerebroprotective & nootropic activities of Andrographis paniculata leaves extract in normal & type 2 diabetic rats.Indian J. Med. Res.2012135563664122771592
    [Google Scholar]
  48. SerranoF.G. Tapia-RojasC. CarvajalF.J. HanckeJ. CerpaW. InestrosaN.C. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice.Mol. Neurodegener.2014916110.1186/1750‑1326‑9‑6125524173
    [Google Scholar]
  49. JayakumarT. HsiehC.Y. LeeJ.J. SheuJ.R. Experimental and clinical pharmacology of andrographis paniculata and its major bioactive phytoconstituent andrographolide.Evid. Based Complement. Alternat. Med.2013201311610.1155/2013/84674023634174
    [Google Scholar]
  50. KumarV. ThakurA.K. ChatterjeeS.S. Perspective of Andrographis paniculata in neurological disorders.Clin. Pharmacol. Biopharm.2014S2e0011410.4172/2167‑065X.S2‑005
    [Google Scholar]
  51. HossainR. QuispeC. Herrera-BravoJ. BeltránJ.F. IslamM.T. ShaheenS. Cruz-MartinsN. MartorellM. KumarM. Sharifi-RadJ. OzdemirF.A. SetzerW.N. AlshehriM.M. CalinaD. ChoW.C. Neurobiological promises of the bitter diterpene lactone andrographolide.Oxid. Med. Cell. Longev.202220221910.1155/2022/307957735154564
    [Google Scholar]
  52. ArifahF.H. NugrohoA.E. RohmanA. SujarwoW. A bibliometric analysis of preclinical trials of Andrographis paniculata (Burm.f.) Nees in diabetes mellitus.S. Afr. J. Bot.2021151Part B12814310.1016/j.sajb.2021.12.011
    [Google Scholar]
  53. SridharanB. LeeM-J. Andrographolide, a diterpene from andrographis paniculata, and its influence on the progression of neurodegenerative disorders.Medicinal Herbs and Fungi: Neurotoxicity vs NeuroprotectionSingaporeSpringer AgrawalD.C. DhanasekaranM. 20217911210.1007/978‑981‑33‑4141‑8_3
    [Google Scholar]
  54. PanossianA. BrendlerT. The role of adaptogens in prophylaxis and treatment of viral respiratory infections.Pharmaceuticals (Basel)202013923610.3390/ph1309023632911682
    [Google Scholar]
  55. PanossianA.G. EfferthT. ShikovA.N. PozharitskayaO.N. KuchtaK. MukherjeeP.K. BanerjeeS. HeinrichM. WuW. GuoD. WagnerH. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases.Med. Res. Rev.202141163070310.1002/med.2174333103257
    [Google Scholar]
  56. ThakurA.K. ChatterjeeS.S. KumarV. Andrographolides and traditionally used Andrographis paniculata as potential adaptogens: Implications for therapeutic innovation.CellMed.201443e1510.5667/tang.2014.0002
    [Google Scholar]
  57. CollinsM.M. CorcoranP. PerryI.J. Anxiety and depression symptoms in patients with diabetes.Diabet. Med.200926215316110.1111/j.1464‑5491.2008.02648.x19236618
    [Google Scholar]
  58. WoonL.S.C. SidiH.B. RavindranA. GosseP.J. MainlandR.L. KaunismaaE.S. HattaN.H. ArnawatiP. ZulkifliA.Y. MustafaN. Leong Bin AbdullahM.F.I. Depression, anxiety, and associated factors in patients with diabetes: Evidence from the anxiety, depression, and personality traits in diabetes mellitus (ADAPT-DM) study.BMC Psychiatry202020122710.1186/s12888‑020‑02615‑y32397976
    [Google Scholar]
  59. BenerA. Al-HamaqA.O. DafeeahE.E. High prevalence of depression, anxiety and stress symptoms among diabetes mellitus patients.Open Psychiatry J.20115151210.2174/1874354401105010005
    [Google Scholar]
  60. AlzoubiA. AbunaserR. KhassawnehA. AlfaqihM. KhasawnehA. AbdoN. The Bidirectional relationship between diabetes and depression: A literature review.Korean J. Fam. Med.201839313714610.4082/kjfm.2018.39.3.13729788701
    [Google Scholar]
  61. RennB.N. FelicianoL. SegalD.L. The bidirectional relationship of depression and diabetes: A systematic review.Clin. Psychol. Rev.20113181239124610.1016/j.cpr.2011.08.00121963669
    [Google Scholar]
  62. KliglerB. UlbrichtC. BaschE. KirkwoodC.D. AbramsT.R. MirandaM. Singh KhalsaK.P. GilesM. BoonH. WoodsJ. Andrographis paniculata for the treatment of upper respiratory infection: A systematic review by the natural standard research collaboration.Explore (NY)200621252910.1016/j.explore.2005.08.00816781605
    [Google Scholar]
  63. SaxenaR.C. SinghR. KumarP. YadavS.C. NegiM.P.S. SaxenaV.S. JoshuaA.J. VijayabalajiV. GoudarK.S. VenkateshwarluK. AmitA. A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold™) in patients with uncomplicated upper respiratory tract infection.Phytomedicine2010173-417818510.1016/j.phymed.2009.12.00120092985
    [Google Scholar]
  64. ThakurA.K. ChatterjeeS.S. KumarV. Neuropsychopharmacology of a therapeutically used Andrographis paniculata extract: A preclinical study.Orient. Pharm. Exp. Med.201414218119110.1007/s13596‑013‑0140‑4
    [Google Scholar]
  65. ThakurA.K. ChatterjeeS.S. KumarV. Antidepressant-like activity of Andrographis paniculata in type-2 diabetic rats.Clin. Pharmacol. Biopharm.2014S2e0011910.4172/2167‑065X.S2‑003
    [Google Scholar]
  66. ThakurA.K. SoniU.K. RaiG. ChatterjeeS.S. KumarV. Protective effects of Andrographis paniculata extract and pure andrographolide against chronic stress-triggered pathologies in rats.Cell. Mol. Neurobiol.20143481111112110.1007/s10571‑014‑0086‑125035059
    [Google Scholar]
  67. ThakurA.K. RaiG. ChatterjeeS.S. KumarV. Beneficial effects of an Andrographis paniculata extract and andrographolide on cognitive functions in streptozotocin-induced diabetic rats.Pharm. Biol.20165491528153810.3109/13880209.2015.110710726810454
    [Google Scholar]
  68. ThakurA.K. KumarV. Neurotransmitters modulating effect of Andrographis paniculata extract and isolated pure andrographolide in diabetic rodents.Pharmacologia2018924654
    [Google Scholar]
  69. ThakurA.K. RaiG. ChatterjeeS.S. KumarV. Analgesic and anti-inflammatory activity of Andrographis paniculata and andrographolide in diabetic rodents.EC Pharmaceutical Science2015111928
    [Google Scholar]
  70. BorhanuddinM. ShamsuzzohaM. HussainA.H. Hypoglycaemic effects of Andrographis paniculata Nees on non-diabetic rabbits.Bangladesh Med. Res. Counc. Bull.199420124267880153
    [Google Scholar]
  71. YusofA.P. AhmadM. Hypoglycaemic effects of Andrographis paniculata Nees.Aust. J. Med. Herb.1997937376
    [Google Scholar]
  72. ZhangX.F. TanB.K. Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats.Acta Pharmacol. Sin.200021121157116411603293
    [Google Scholar]
  73. ZhangX.F. TanB.K.H. Antihyperglycaemic and anti-oxidant properties of Andrographis paniculata in normal and diabetic rats.Clin. Exp. Pharmacol. Physiol.2000275-635836310.1046/j.1440‑1681.2000.03253.x10831236
    [Google Scholar]
  74. JaiyesimiK.F. AgunbiadeO.S. AjiboyeB.O. AfolabiO.B. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat.J. Diabetes Metab. Disord.20201921543155610.1007/s40200‑020‑00690‑233553038
    [Google Scholar]
  75. DwivediM.K. SonterS. MishraS. SinghP. SinghP.K. Secondary metabolite profiling and characterization of diterpenes and flavones from the methanolic extract of Andrographis paniculata using HPLC-LC-MS/MS.Futur. J. Pharm. Sci.2021710.1186/s43094‑021‑00292‑6
    [Google Scholar]
  76. XuJ. LiZ. CaoM. ZhangH. SunJ. ZhaoJ. ZhouQ. WuZ. YangL. Synergetic effect of Andrographis paniculata polysaccharide on diabetic nephropathy with andrographolide.Int. J. Biol. Macromol.201251573874210.1016/j.ijbiomac.2012.06.03522766034
    [Google Scholar]
  77. NalamoluK.R. Anti-hyperglycemic and renal protective activities of andrographis paniculata roots chloroform extract.Iranian J. Pharmacol. Therap.2006514750
    [Google Scholar]
  78. BrahmachariG. Andrographolide: A molecule of antidiabetic promise.Discovery and Development of Anti-diabetic Agents from Natural productsElsevier BrahmachariG. 201712710.1016/B978‑0‑12‑809450‑1.00001‑6
    [Google Scholar]
  79. ChandakK. DabhekarS. BhuyaA. UmekarD.M. Assessment of antidiabetic activity of dried juice of Andrographis paniculata leaves in alloxan induced diabetic rats.Int. J. Pharm. Sci. Nanotechnol.20221525862586610.37285/ijpsn.2022.15.2.5
    [Google Scholar]
  80. YuB.C. HungC.R. ChenW.C. ChengJ.T. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats.Planta Med.200369121075107910.1055/s‑2003‑4518514750020
    [Google Scholar]
  81. YuB.C. ChangC.K. SuC.F. ChengJ.T. Mediation of β-endorphin in andrographolide-induced plasma glucose-lowering action in type I diabetes-like animals.Naunyn Schmiedebergs Arch. Pharmacol.20083774-652954010.1007/s00210‑007‑0240‑018080810
    [Google Scholar]
  82. ChengJ.T. HuangC.C. LiuI.M. TzengT.F. ChangC.J. Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats.Diabetes200655381982510.2337/diabetes.55.03.06.db05‑093416505249
    [Google Scholar]
  83. NugrohoA. AndrieM. WarditianiN. SiswantoE. PramonoS. LukitaningsihE. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats.Indian J. Pharmacol.201244337738110.4103/0253‑7613.9634322701250
    [Google Scholar]
  84. ThakurA.K. ChatterjeeS.S. KumarV. Therapeutic potential of traditionally used medicinal plant Andrographis paniculata (Burm. F.) against diabesity: An experimental study in rats.CellMed.201441717810.5667/tang.2014.0001
    [Google Scholar]
  85. ShangY. ShenC. StubT. ZhuS. QiaoS. LiY. WangR. LiJ. LiuJ. Adverse effects of andrographolide derivative medications compared to the safe use of herbal preparations of Andrographis paniculata: Results of a systematic review and meta-analysis of clinical studies.Front. Pharmacol.20221377328210.3389/fphar.2022.77328235153776
    [Google Scholar]
  86. WorakunphanichW. ThavorncharoensapM. YoungkongS. ThadaniponK. ThakkinstianA. Safety of Andrographis paniculata: A systematic review and meta‐analysis.Pharmacoepidemiol. Drug Saf.202130672773910.1002/pds.519033372366
    [Google Scholar]
  87. MathurD. AnandA. SrivastavaV. PatilS.S. SinghA. RajeshS.K. NagendraH.R. NagarathnaR. Depression in high-risk type 2 diabetes adults.Ann. Neurosci.2020273-420421310.1177/097275312199018134556961
    [Google Scholar]
  88. GrahamE.A. DeschênesS.S. KhalilM.N. DannaS. FilionK.B. SchmitzN. Measures of depression and risk of type 2 diabetes: A systematic review and meta-analysis.J. Affect. Disord.202026522423210.1016/j.jad.2020.01.05332090745
    [Google Scholar]
  89. ChenX. EslamfamS. FangL. QiaoS. MaX. Maintenance of gastrointestinal glucose homeostasis by the gut-brain axis.Curr. Protein Pept. Sci.201718654154710.2174/138920371766616062708360427356933
    [Google Scholar]
  90. de ClercqN.C. FrissenM.N. GroenA.K. NieuwdorpM. Gut microbiota and the gut-brain axis: New insights in the pathophysiology of metabolic syndrome.Psychosom. Med.201779887487910.1097/PSY.000000000000049528557822
    [Google Scholar]
  91. MigrenneS. MarsollierN. CrucianiguglielmacciC. MagnanC. Importance of the gut–brain axis in the control of glucose homeostasis.Curr. Opin. Pharmacol.20066659259710.1016/j.coph.2006.08.00416990049
    [Google Scholar]
  92. SamA.H. TrokeR.C. TanT.M. BewickG.A. The role of the gut/brain axis in modulating food intake.Neuropharmacology2012631465610.1016/j.neuropharm.2011.10.00822037149
    [Google Scholar]
  93. CryanJ.F. DinanT.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour.Nat. Rev. Neurosci.2012131070171210.1038/nrn334622968153
    [Google Scholar]
  94. De PalmaG. CollinsS.M. BercikP. VerduE.F. The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?J. Physiol.2014592142989299710.1113/jphysiol.2014.27399524756641
    [Google Scholar]
  95. LeeS.H. SerreC.B. Gut microbiome-brain communications regulate host physiology and behavior.J. Nutrit. Health Food Sci.201532112
    [Google Scholar]
  96. SahaP. SkidmoreP.T. HollandL.A. MondalA. BoseD. SethR.K. SullivanK. JanulewiczP.A. HornerR. KlimasN. NagarkattiM. NagarkattiP. LimE.S. ChatterjeeS. Andrographolide attenuates gut-brain-axis associated pathology in gulf war illness by modulating bacteriome-virome associated inflammation and microglia-neuron proinflammatory crosstalk.Brain Sci.202111790510.3390/brainsci1107090534356139
    [Google Scholar]
  97. SuH. MoJ. NiJ. KeH. BaoT. XieJ. XuY. XieL. ChenW. Andrographolide exerts antihyperglycemic effect through strengthening intestinal barrier function and increasing microbial composition of Akkermansia muciniphila.Oxid. Med. Cell. Longev.2020202012010.1155/2020/653893032774682
    [Google Scholar]
  98. WuH. WuX. HuangL. RuanC. LiuJ. ChenX. LiuJ. LuoH. Effects of andrographolide on mouse intestinal microflora based on high-throughput sequence analysis.Front. Vet. Sci.2021870288510.3389/fvets.2021.70288534485430
    [Google Scholar]
  99. ChatterjeeS.S. KumarV. Quantitative systems pharmacology: Lessons from fumaric acid and herbal remedies.Drug Des.201762100015210.4172/2169‑0138.1000152
    [Google Scholar]
  100. BehrensM. BrockhoffA. BatramC. KuhnC. AppendinoG. MeyerhofW. The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin.J. Agric. Food Chem.200957219860986610.1021/jf901433419817411
    [Google Scholar]
  101. BrockhoffA. BehrensM. MassarottiA. AppendinoG. MeyerhofW. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium.J. Agric. Food Chem.200755156236624310.1021/jf070503p17595105
    [Google Scholar]
  102. DotsonC.D. ZhangL. XuH. ShinY.K. ViguesS. OttS.H. ElsonA.E.T. ChoiH.J. ShawH. EganJ.M. MitchellB.D. LiX. SteinleN.I. MungerS.D. Bitter taste receptors influence glucose homeostasis.PLoS One2008312e397410.1371/journal.pone.000397419092995
    [Google Scholar]
  103. KokB.P. GalmozziA. LittlejohnN.K. AlbertV. GodioC. KimW. KimS.M. BlandJ.S. GraysonN. FangM. MeyerhofW. SiuzdakG. SrinivasanS. BehrensM. SaezE. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits.Mol. Metab.201816768710.1016/j.molmet.2018.07.01330120064
    [Google Scholar]
  104. TuzimK. KorolczukA. Correction to: An update on extra-oral bitter taste receptors.J. Transl. Med.202119147810.1186/s12967‑021‑03137‑134836552
    [Google Scholar]
  105. TuzimK. KorolczukA. An update on extra-oral bitter taste receptors.J. Transl. Med.202119144010.1186/s12967‑021‑03067‑y34674725
    [Google Scholar]
  106. BehrensM. MeyerhofW. Vertebrate bitter taste receptors: Keys for survival in changing environments.J. Agric. Food Chem.201866102204221310.1021/acs.jafc.6b0483528013542
    [Google Scholar]
  107. ClarkA.A. LiggettS.B. MungerS.D. Extraoral bitter taste receptors as mediators of off‐target drug effects.FASEB J.201226124827483110.1096/fj.12‑21508722964302
    [Google Scholar]
  108. LevitA. NowakS. PetersM. WienerA. MeyerhofW. BehrensM. NivM.Y. The bitter pill: Clinical drugs that activate the human bitter taste receptor TAS2R14.FASEB J.20142831181119710.1096/fj.13‑24259424285091
    [Google Scholar]
  109. ViswanathanV.K. Sensing bacteria, without bitterness?Gut Microbes201342919310.4161/gmic.2377623380647
    [Google Scholar]
  110. LuP. ZhangC.H. LifshitzL.M. ZhuGeR. Extraoral bitter taste receptors in health and disease.J. Gen. Physiol.2017149218119710.1085/jgp.20161163728053191
    [Google Scholar]
  111. QuJ. LiuQ. YouG. YeL. JinY. KongL. GuoW. XuQ. SunY. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective.Med. Res. Rev.20224231147117810.1002/med.2187334877672
    [Google Scholar]
  112. ArumugamG. PanneerselvamS. A biochemical study on the gastroprotective effect of hydroalcoholic extract of Andrographis paniculata in rats.Indian J. Pharmacol.201143440240810.4103/0253‑7613.8311021844994
    [Google Scholar]
  113. SaranyaP. GeethaA. KarthikeyanM. SelvamathyN. The antioxidant and H+K+ATPase inhibitory effect of Andrographis paniculata and andrographolide - in vitro and in vivo studies.Pharmacologyonline20101356376
    [Google Scholar]
  114. ZhangY.J. GanR.Y. LiS. ZhouY. LiA.N. XuD.P. LiH.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.Molecules20152012211382115610.3390/molecules20121975326633317
    [Google Scholar]
  115. ShuL. FuH. PiA. FengY. DongH. SiC. LiS. ZhuF. ZhengP. ZhuQ. Protective effect of andrographolide against ulcerative colitis by activating Nrf2/HO-1 mediated antioxidant response.Front. Pharmacol.202415142421910.3389/fphar.2024.142421939135804
    [Google Scholar]
  116. BuczyńskaA. SidorkiewiczI. KrętowskiA.J. AdamskaA. Examining the clinical relevance of metformin as an antioxidant intervention.Front. Pharmacol.202415133079710.3389/fphar.2024.133079738362157
    [Google Scholar]
  117. WongS.Y. TanM.G.K. WongP.T.H. HerrD.R. LaiM.K.P. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK.J. Neuroinflammation201613125110.1186/s12974‑016‑0723‑327663973
    [Google Scholar]
  118. LuJ. MaY. WuJ. HuangH. WangX. ChenZ. ChenJ. HeH. HuangC. A review for the neuroprotective effects of andrographolide in the central nervous system.Biomed. Pharmacother.201911710907810.1016/j.biopha.2019.10907831181444
    [Google Scholar]
  119. RudralaL.C. ChallaR.R. SubramanyamS. Ayyappa GouruS. SinghG. Sirisha MulukuriN.V.L. PasalaP.K. DintakurthiP.S.N.B.K. GajulaS. RudrapalM. Cerebroprotective potential of andrographolide nanoparticles: In silico and in vivo investigations.Drug Res. (Stuttg.)202474733534610.1055/a‑2345‑539638991529
    [Google Scholar]
  120. MussardE. CesaroA. LespessaillesE. LegrainB. Berteina-RaboinS. ToumiH. Andrographolide, a natural antioxidant: An update.Antioxidants201981257110.3390/antiox812057131756965
    [Google Scholar]
  121. TodorovaV. IvanovK. DelattreC. NalbantovaV. Karcheva-BahchevanskaD. IvanovaS. Plant adaptogens - History and future perspectives.Nutrients2021138286110.3390/nu1308286134445021
    [Google Scholar]
  122. KumarV. ChatterjeeS. Single and repeated dose effects of phytochemicals in rodent behavioural models.EC Pharmaceutical Science201411617
    [Google Scholar]
  123. LiuK. ZhaoL. XuW. LinQ. ZhouY. HuangX. YeX. HeJ. BaiG. YanZ. GaoH. Metabolic changes associated with a rat model of diabetic depression detected by ex vivo 1 H nuclear magnetic resonance spectroscopy in the prefrontal cortex, hippocampus, and hypothalamus.Neural Plast.2018201811210.1155/2018/647372829849562
    [Google Scholar]
  124. ShivavediN. KumarM. TejG.N.V.C. NayakP.K. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats.Brain Res.201716741910.1016/j.brainres.2017.08.01928827076
    [Google Scholar]
  125. GarabaduD. KrishnamurthyS. Metformin attenuates hepatic insulin resistance in type-2 diabetic rats through PI3K/Akt/GLUT-4 signalling independent to bicuculline-sensitive GABA A receptor stimulation.Pharm. Biol.201755172272810.1080/13880209.2016.126863528142314
    [Google Scholar]
  126. GarabaduD. KrishnamurthyS. Diazepam potentiates the antidiabetic, antistress and anxiolytic activities of metformin in type-2 diabetes mellitus with cooccurring stress in experimental animals.BioMed Res. Int.2014201411510.1155/2014/69307424995322
    [Google Scholar]
  127. PintanaH. ApaijaiN. PratchayasakulW. ChattipakornN. ChattipakornS.C. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.Life Sci.20129111-1240941410.1016/j.lfs.2012.08.01722925597
    [Google Scholar]
  128. GuoM. MiJ. JiangQ.M. XuJ.M. TangY.Y. TianG. WangB. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus.Clin. Exp. Pharmacol. Physiol.201441965065610.1111/1440‑1681.1226524862430
    [Google Scholar]
  129. BehrensM. MeyerhofW. Bitter taste receptor research comes of age: From characterization to modulation of TAS2Rs.Semin. Cell Dev. Biol.201324321522110.1016/j.semcdb.2012.08.00622947915
    [Google Scholar]
  130. GreeneT.A. AlarconS. ThomasA. BerdougoE. DoranzB.J. BreslinP.A.S. RuckerJ.B. Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin.PLoS One201165e2012310.1371/journal.pone.002012321629661
    [Google Scholar]
  131. TurnerA. VeyseyM. KeelyS. ScarlettC. LucockM. BeckettE.L. Interactions between bitter taste, diet and dysbiosis: Consequences for appetite and obesity.Nutrients20181010133610.3390/nu1010133630241292
    [Google Scholar]
  132. RezaieP. BitarafanV. HorowitzM. Feinle-BissetC. Effects of bitter substances on gi function, energy intake and glycaemia-do preclinical findings translate to outcomes in humans?Nutrients2021134131710.3390/nu1304131733923589
    [Google Scholar]
  133. BlackH.S. BoehmF. EdgeR. TruscottT.G. The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms - A comprehensive review.Antioxidants20209326410.3390/antiox903026432210038
    [Google Scholar]
  134. CsepanyiE. CzompaA. HainesD. LekliI. BakondiE. BallaG. TosakiA. BakI. Cardiovascular effects of low versus high-dose beta-carotene in a rat model.Pharmacol. Res.201510014815610.1016/j.phrs.2015.07.02126225824
    [Google Scholar]
  135. CullenM.R. BarnettM.J. BalmesJ.R. CartmelB. RedlichC.A. BrodkinC.A. BarnhartS. RosenstockL. GoodmanG.E. HammarS.P. ThornquistM.D. OmennG.S. Predictors of lung cancer among asbestos-exposed men in the beta-carotene and retinol efficacy trial.Am. J. Epidemiol.2005161326027010.1093/aje/kwi03415671258
    [Google Scholar]
  136. VrolijkM.F. OpperhuizenA. JansenE.H.J.M. GodschalkR.W. Van SchootenF.J. BastA. HaenenG.R.M.M. The shifting perception on antioxidants: The case of vitamin E and β-carotene.Redox Biol.2015427227810.1016/j.redox.2014.12.01725625581
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560321901241210082616
Loading
/content/journals/cpsp/10.2174/0122115560321901241210082616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test