Skip to content
2000
Volume 21, Issue 4
  • ISSN: 2666-0822
  • E-ISSN: 2666-0830

Abstract

The continual deterioration of the structure and function of the nervous system is a major global health problem associated with neurodegenerative disorders. Gut-brain axis plays a significant role in linking gut microbiota to neurological function. Live microorganisms that benefit the host's health are called probiotics. These probiotics are increasingly recognized as beneficial for treating neurodegenerative diseases. This review investigates the impact of probiotics on neurodegenerative disorders, specifically focusing on conditions like Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. According to studies, probiotics have the power to alter the host's neuroimmune response, lower inflammation, and modify the composition of the gut microbiota. Studies have indicated a potential relationship between the stomach and the brain by connecting variations in the gut microbiota to neurodegenerative diseases. Probiotics can influence the gut flora, which leads to a reduction in neuroinflammation, oxidative stress, and other pathological processes linked with these conditions. This review also discusses how probiotics impact the central nervous system through mechanisms such as altered blood-brain barrier function, neurotrophic factor regulation, and neurotransmitter production. Based on preclinical and clinical data, probiotics are also highlighted as an adjunctive or prophylactic treatment for neurodegenerative diseases. More research is needed to find the exact strains, dosages, and duration of probiotic therapies required to have the greatest neuroprotective effects, despite the good results thus far. It is also acknowledged that translating findings from animal studies to human applications can be challenging. With the ability to reduce the neuropathological features of Parkinson's and Alzheimer's diseases, probiotics provide a novel therapeutic approach for neurodegenerative illnesses.

Loading

Article metrics loading...

/content/journals/cprr/10.2174/0126660822304321240520075036
2024-05-29
2025-11-14
Loading full text...

Full text loading...

References

  1. MorellaI. NegroM. DossenaM. BrambillaR. D’AntonaG. Gut-muscle-brain axis: Molecular mechanisms in neurodegenerative disorders and potential therapeutic efficacy of probiotic supplementation coupled with exercise.Neuropharmacology202324010971810.1016/j.neuropharm.2023.10971837774944
    [Google Scholar]
  2. YadavH. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review.Life Sci.2023330122022
    [Google Scholar]
  3. MaT. ShenX. ShiX. Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review.Trends Food Sci. Technol.202313817819810.1016/j.tifs.2023.06.013
    [Google Scholar]
  4. SharmaH. KaushikM. GoswamiP. Role of miRNAs in brain development.MicroRNA20241310.2174/012211536628712724032205451938571343
    [Google Scholar]
  5. AnandA. KhuranaN. KumarR. SharmaN. Food for the mind: The journey of probiotics from foods to anti-Alzheimer’s disease therapeutics.Food Biosci.20235110232310.1016/j.fbio.2022.102323
    [Google Scholar]
  6. LetaV. Ray ChaudhuriK. MilnerO. Neurogenic and anti-inflammatory effects of probiotics in Parkinson’s disease: A systematic review of preclinical and clinical evidence.Brain Behav. Immun.202198597310.1016/j.bbi.2021.07.02634364965
    [Google Scholar]
  7. TyagiP. TasleemM. PrakashS. ChouhanG. Intermingling of gut microbiota with brain: Exploring the role of probiotics in battle against depressive disorders.Food Res. Int.202013710948910.1016/j.foodres.2020.10948933233143
    [Google Scholar]
  8. Kanwar RajawatN. BhardwajK. MathurN. Risk of Parkinson disease associated with pesticide exposure and protection by probiotics.Mater. Today Proc.202269A1A1110.1016/j.matpr.2022.12.153
    [Google Scholar]
  9. SongJ.G. YuM.S. LeeB. Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders.Comput. Struct. Biotechnol. J.2022201097111010.1016/j.csbj.2022.02.02435317228
    [Google Scholar]
  10. Borrego-RuizA. BorregoJ.J. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry202412811086110.1016/j.pnpbp.2023.11086137690584
    [Google Scholar]
  11. KumarN. SahooN.K. MehanS. verma B. The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis.Mult. Scler. Relat. Disord.20237110454710.1016/j.msard.2023.10454736805171
    [Google Scholar]
  12. TongJ. SatyanarayananS.K. SuH. Nutraceuticals and probiotics in the management of psychiatric and neurological disorders: A focus on microbiota-gut-brain-immune axis.Brain Behav. Immun.202090403419[https://www.sciencedirect.com/science/article/pii/S0889159120302725].10.1016/j.bbi.2020.08.02732889082
    [Google Scholar]
  13. SinghH. ChopraC. SinghH. Gut-brain axis and Alzheimer’s disease: Therapeutic interventions and strategies.J. Funct. Foods202411210591510.1016/j.jff.2023.105915
    [Google Scholar]
  14. AghamohammadS. HafeziA. RohaniM. Probiotics as functional foods: How probiotics can alleviate the symptoms of neurological disabilities.Biomed. Pharmacother.202316311481610.1016/j.biopha.2023.11481637150033
    [Google Scholar]
  15. PrathivirajR. AdithyaK.K. RajeevR. Alleviation of migraine through gut microbiota-brain axis and dietary interventions: Coupling epigenetic network information with critical literary survey.Trends Food Sci. Technol.202314110417410.1016/j.tifs.2023.104174
    [Google Scholar]
  16. SilveiraA.K. GasparottoJ. MoreiraJ.C.F. Probiotics and the gut-brain axis. In: Brandelli ABTP, Ed. Academic Press. BrandelliA.B.T.P. 2022451466
    [Google Scholar]
  17. CarabottiM. SciroccoA. MaselliM.A. SeveriC. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems.Ann. Gastroenterol.201528220320925830558
    [Google Scholar]
  18. SinghD. KhanM.A. SiddiqueH.R. Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers.Life Sci.202128512000810.1016/j.lfs.2021.12000834606851
    [Google Scholar]
  19. ZhaoS. FengP. HuX. Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid.iScience2022251010519810.1016/j.isci.2022.10519836248735
    [Google Scholar]
  20. SnigdhaS. HaK. TsaiP. DinanT.G. BartosJ.D. ShahidM. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan.Pharmacol. Ther.202223110797810.1016/j.pharmthera.2021.10797834492236
    [Google Scholar]
  21. CookeC.G. GibbZ. HarnettJ.E. The safety, tolerability and efficacy of probiotic bacteria for equine use.J. Equine Vet. Sci.20219910340710.1016/j.jevs.2021.10340733781424
    [Google Scholar]
  22. ZendeboodiF. KhorshidianN. MortazavianA.M. da CruzA.G. Probiotic: conceptualization from a new approach.Curr. Opin. Food Sci.20203210312310.1016/j.cofs.2020.03.009
    [Google Scholar]
  23. KumariM SinghP NatarajBH Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective.Food Res Int20211550PT A11071610.1016/j.foodres.2021.11071634865747
    [Google Scholar]
  24. OjhaS. PatilN. JainM. KoleC. KaushikP. Probiotics for neurodegenerative diseases: A systemic review.Microorganisms2023114108310.3390/microorganisms1104108337110506
    [Google Scholar]
  25. XiangS. JiJ.L. LiS. Efficacy and safety of probiotics for the treatment of Alzheimer’s disease, mild cognitive impairment, and Parkinson’s Disease: A systematic review and meta-analysis.Front. Aging Neurosci.20221473003610.3389/fnagi.2022.73003635185522
    [Google Scholar]
  26. d’AngeloM. CiminiA. CastelliV. QuintilianiM. BenedettiE. CifoneM.G. The emerging role of probiotics in neurodegenerative diseases: New hope for Parkinson’s disease?Neural Regen. Res.202116462863410.4103/1673‑5374.29527033063712
    [Google Scholar]
  27. AbughazalehS.J. EuersL.A. QuigleyE.M.M. 2.32 - Microbiota-brain-gut axis and neurodegenerative disorders. GlibeticM.B.T.C.G.M. In: Glibetic MBTCGM, Ed. OxfordElsevier2022412422
    [Google Scholar]
  28. SongZ. ChengL. LiuY. ZhanS. WuZ. ZhangX. Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters.Trends Food Sci. Technol.202212958159010.1016/j.tifs.2022.10.019
    [Google Scholar]
  29. SharmaG. BiswasS.S. MishraJ. Gut microbiota dysbiosis and Huntington’s disease: Exploring the gut-brain axis and novel microbiota-based interventions.Life Sci.202332812188210.1016/j.lfs.2023.12188237356750
    [Google Scholar]
  30. SunQ. ChengL. ZengX. ZhangX. WuZ. WengP. The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis.Int. J. Biol. Macromol.20201641484149210.1016/j.ijbiomac.2020.07.20832735929
    [Google Scholar]
  31. AndersonR.C. Can probiotics mitigate age-related neuroinflammation leading to improved cognitive outcomes?Front. Nutr.20229101207610.3389/fnut.2022.101207636505245
    [Google Scholar]
  32. GauthierE. MilagroF.I. Navas-CarreteroS. Effect of low-and non-calorie sweeteners on the gut microbiota: A review of clinical trials and cross-sectional studies.Nutrition202411711223710.1016/j.nut.2023.11223737897982
    [Google Scholar]
  33. ZhangZ. XuM. WangL. Continuous oral exposure to micro- and nanoplastics induced gut microbiota dysbiosis, intestinal barrier and immune dysfunction in adult mice.Environ. Int.202318210835310.1016/j.envint.2023.10835338035535
    [Google Scholar]
  34. SocałaK. DoboszewskaU. SzopaA. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders.Pharmacol. Res.202117210584010.1016/j.phrs.2021.10584034450312
    [Google Scholar]
  35. ZhouJ. TangM. LiW. FangR. TangC. WangQ. Diet and physical activity influence the composition of gut microbiota, benefit on Alzheimer’s disease.Food Sci. Hum. Wellness202413254155510.26599/FSHW.2022.9250049
    [Google Scholar]
  36. AçarY. AğagündüzD. De CiccoP. CapassoR. Flavonoids: Their putative neurologic roles, epigenetic changes, and gut microbiota alterations in Parkinson’s disease.Biomed. Pharmacother.202316811578810.1016/j.biopha.2023.11578837913731
    [Google Scholar]
  37. ChidambaramS.B. EssaM.M. RathipriyaA.G. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle.Pharmacol. Ther.202223110798810.1016/j.pharmthera.2021.10798834536490
    [Google Scholar]
  38. SusmithaG. KumarR. Role of microbial dysbiosis in the pathogenesis of Alzheimer’s disease.Neuropharmacology202322910947810.1016/j.neuropharm.2023.10947836871788
    [Google Scholar]
  39. KorfJ.M. GaneshB.P. McCulloughL.D. Gut dysbiosis and age-related neurological diseases in females.Neurobiol. Dis.202216810569510.1016/j.nbd.2022.10569535307514
    [Google Scholar]
  40. ZhaoM. ChuJ. FengS. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review.Biomed. Pharmacother.202316411498510.1016/j.biopha.2023.11498537311282
    [Google Scholar]
  41. QuC. XuQ.Q. YangW. ZhongM. YuanQ. XianY.F. Gut dysbiosis aggravates cognitive deficits, amyloid pathology and lipid metabolism dysregulation in a transgenic mouse model of Alzheimer’s disease.J. Pharm. Anal.2023131215261547
    [Google Scholar]
  42. De CillisF. PilottoA. MarizzoniM. ConfortiF. FerrariE. LupiniA. Gut dysbiosis and neurodegenerative diseases: potential implication for Parkinson’s disease and dementia with Lewy bodies diagnosis and treatment.Neurosci Appl2022110083710.1016/j.nsa.2022.100837
    [Google Scholar]
  43. AdıgüzelE. ÇiçekB. ÜnalG. AydınM.F. Barlak-KetiD. Probiotics and prebiotics alleviate behavioral deficits, inflammatory response, and gut dysbiosis in prenatal VPA-induced rodent model of autism.Physiol. Behav.202225611396110.1016/j.physbeh.2022.11396136100109
    [Google Scholar]
  44. DuqueA.L.R.F. DemarquiF.M. SantoniM.M. Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model.Food Res. Int.202114911065710.1016/j.foodres.2021.11065734600659
    [Google Scholar]
  45. PalepuM.S.K. DandekarM.P. Remodeling of microbiota gut-brain axis using psychobiotics in depression.Eur. J. Pharmacol.202293117517110.1016/j.ejphar.2022.17517135926568
    [Google Scholar]
  46. RaniK. KaurG. AliS.A. Probiotic-prebiotic therapeutic potential: A new horizon of microbial biotherapy to reduce female reproductive complications.PharmaNutrition20232410034210.1016/j.phanu.2023.100342
    [Google Scholar]
  47. CastroV.M.R. LucheseR.H. Antidiabetogenic mechanisms of probiotic action in food matrices: A review.PharmaNutrition20222110030210.1016/j.phanu.2022.100302
    [Google Scholar]
  48. WangM. LiuP. KongL. XuN. LeiH. Promotive effects of sesamin on proliferation and adhesion of intestinal probiotics and its mechanism of action.Food Chem. Toxicol.202114911204910.1016/j.fct.2021.11204933561518
    [Google Scholar]
  49. Plaza-DiazJ. Ruiz-OjedaF.J. Gil-CamposM. GilA. Mechanisms of action of probiotics.Adv. Nutr.201910Suppl. 1S49S6610.1093/advances/nmy06330721959
    [Google Scholar]
  50. SarkarA. MandalS. Bifidobacteria—Insight into clinical outcomes and mechanisms of its probiotic action.Microbiol. Res.201619215917110.1016/j.micres.2016.07.00127664734
    [Google Scholar]
  51. GoyalD. AliS.A. SinghR.K. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease.Prog. Neuropsychopharmacol. Biol. Psychiatry202110611011210.1016/j.pnpbp.2020.11011232949638
    [Google Scholar]
  52. XuL. WangR. LiuY. ZhanS. WuZ. ZhangX. Effect of tea polyphenols on the prevention of neurodegenerative diseases through gut microbiota.J. Funct. Foods202310710566910.1016/j.jff.2023.105669
    [Google Scholar]
  53. ParolisiS. MontanariC. BorghiE. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in Phenylketonuria.Pharmacol. Res.202319710695210.1016/j.phrs.2023.10695237804926
    [Google Scholar]
  54. MahapatroA. BawnaF. KumarV. Anti-inflammatory effects of probiotics and synbiotics on patients with non-alcoholic fatty liver disease: An umbrella study on meta-analyses.Clin. Nutr. ESPEN20235747548610.1016/j.clnesp.2023.07.08737739694
    [Google Scholar]
  55. WongW.Y. ChanB.D. LeungT.W. ChenM. TaiW.C.S. Beneficial and anti-inflammatory effects of formulated prebiotics, probiotics, and synbiotics in normal and acute colitis mice.J. Funct. Foods20228810487110.1016/j.jff.2021.104871
    [Google Scholar]
  56. AghamohammadS. SepehrA. MiriS.T. NajafiS. PourshafieM.R. RohaniM. Ameliorating inflammation in an in vitro model by screening the anti-inflammatory and immunomodulatory roles of putative probiotics in inflammatory bowel disease.Heliyon202399e1947510.1016/j.heliyon.2023.e1947537809831
    [Google Scholar]
  57. Machado PradoM.R. BollerC. Anti-inflammatory effects of probiotics. In: Natural PDD, Ed. Brahmachari GBTD and D of AIA from NP. NaturalP.D.D. Elsevier2019259282
    [Google Scholar]
  58. GrimoudJ. DurandH. de SouzaS. In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects.Int. J. Food Microbiol.20101441425010.1016/j.ijfoodmicro.2010.09.00720951454
    [Google Scholar]
  59. BirmannP.T. CasarilA.M. PesaricoA.P. Komagataella pastoris KM71H modulates neuroimmune and oxidative stress parameters in animal models of depression: A proposal for a new probiotic with antidepressant-like effect.Pharmacol. Res.202117110574010.1016/j.phrs.2021.10574034246781
    [Google Scholar]
  60. ZhangD.H. FanY.H. ZhangY.Q. CaoH. Neuroendocrine and neuroimmune mechanisms underlying comorbidity of pain and obesity.Life Sci.202332212166910.1016/j.lfs.2023.12166937023950
    [Google Scholar]
  61. PeixotoC. MaesM. PaivaI.H.R. MendonçaI.P. de MeloM.G. Duarte-SilvaE. Chapter 2 -Neuroimmune interactions: From bench to bedside.In: Translational Immunology.Academic Press2023935
    [Google Scholar]
  62. GuoT.L. ChenY. XuH.S. McDonoughC.M. HuangG. Gut microbiome in neuroendocrine and neuroimmune interactions: The case of genistein.Toxicol. Appl. Pharmacol.202040211513010.1016/j.taap.2020.11513032673657
    [Google Scholar]
  63. MiraghajaniM. ZaghianN. MirlohiM. FeiziA. GhiasvandR. The impact of probiotic soy milk consumption on oxidative stress among type 2 diabetic kidney disease patients: A randomized controlled clinical trial.J. Ren. Nutr.201727531732410.1053/j.jrn.2017.04.00428579313
    [Google Scholar]
  64. ZarezadehM. MahmoudinezhadM. HosseiniB. Dietary pattern in autism increases the need for probiotic supplementation: A comprehensive narrative and systematic review on oxidative stress hypothesis.Clin. Nutr.20234281330135810.1016/j.clnu.2023.06.01437418842
    [Google Scholar]
  65. CiltasA.C. ToyC.E. GüneşH. YaprakM. Effects of probiotics on GABA/glutamate and oxidative stress in PTZ- induced acute seizure model in rats.Epilepsy Res.202319510719010.1016/j.eplepsyres.2023.10719037473590
    [Google Scholar]
  66. KouJ. KangH. HuL. Evaluation of improvement of cognitive impairment in older adults with probiotic supplementation: A systematic review and meta-analysis.Geriatr. Nurs.20235415516210.1016/j.gerinurse.2023.09.00937788563
    [Google Scholar]
  67. FuY. HuJ. ChengH. Research note: Probiotic, bacillus subtilis, alleviates neuroinflammation in the hippocampus via the gut microbiota-brain axis in heat-stressed chickens.Poult. Sci.2023102610263510.1016/j.psj.2023.10263537011470
    [Google Scholar]
  68. SharmaH. TyagiS.J. ChandraP. VermaA. KumarP. AshiqueS. Role of exosomes in parkinson’s and alzheimer’s diseases BT - Exosomes based drug delivery strategies for brain disorders.In: Mishra N, Ashique S, Garg A, Chithravel V, Anand K, Eds. MishraN. AshiqueS. GargA. ChithravelV. AnandK. SingaporeSpringer Nature Singapore202414718210.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  69. SharmaH. RachamallaH.K. MishraN. ChandraP. PathakR. AshiqueS. Introduction to Exosome and Its Role in Brain Disorders BT - Exosomes Based Drug Delivery Strategies for Brain Disorders.In:Ashique S, Garg A, Chithravel V, Anand K, Eds. Singapore: Springer Nature Singapore 2024;13510.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  70. HosseinzadehS. AfshariS. MolaeiS. RezaeiN. DadkhahM. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape.J. Neuroimmunol.202338457820610.1016/j.jneuroim.2023.57820637813041
    [Google Scholar]
  71. UllahM.F. AhmadA. BhatS.H. Abu-DuhierF.M. BarretoG.E. AshrafG.M. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders.Neurosci. Biobehav. Rev.20191029510510.1016/j.neubiorev.2019.04.00330959072
    [Google Scholar]
  72. SharmaH. PathakR. JainS. BhandariM. MishraR. ReenaK. Ficus racemosa L: A review on its important medicinal uses, phytochemicals and biological activities.J. Popul. Ther. Clin. Pharmacol.20233017213227
    [Google Scholar]
  73. KumarP. SharmaH. SinghA. PandeyS.N. ChandraP. Correlation Between Exosomes and Neuro-inflammation in Various Brain Disorders BT - Exosomes Based Drug Delivery Strategies for Brain Disorders.In: Mishra N, Ashique S, Garg A, Chithravel V, Anand K, Eds. Singapore: Springer Nature Singapore 2024;27330210.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
  74. DuMontM. AgostinisA. SinghK. SwanE. ButtleY. TropeaD. Sex representation in neurodegenerative and psychiatric disorders’ preclinical and clinical studies.Neurobiol. Dis.202318410621410.1016/j.nbd.2023.10621437385457
    [Google Scholar]
  75. DhamiM. RajK. SinghS. Relevance of gut microbiota to alzheimer’s disease (AD): Potential effects of probiotic in management of AD.Aging Health Res.202331100128
    [Google Scholar]
  76. ShamsipourS. SharifiG. TaghianF. Impact of interval training with probiotic (L. plantarum / Bifidobacterium bifidum) on passive avoidance test, ChAT and BDNF in the hippocampus of rats with Alzheimer’s disease.Neurosci. Lett.202175613594910.1016/j.neulet.2021.13594933974953
    [Google Scholar]
  77. KaurH. Nagamoto-CombsK. GolovkoS. GolovkoM.Y. KlugM.G. CombsC.K. Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease.Neurobiol. Aging20209211413410.1016/j.neurobiolaging.2020.04.00932417748
    [Google Scholar]
  78. SharmaH. ChandraP. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease.Int. J. Pharm. Investig.202314111712610.5530/ijpi.14.1.15
    [Google Scholar]
  79. DoifodeT. GiridharanV.V. GenerosoJ.S. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology.Pharmacol. Res.202116410531410.1016/j.phrs.2020.10531433246175
    [Google Scholar]
  80. KesikaP. SuganthyN. SivamaruthiB.S. ChaiyasutC. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease.Life Sci.202126411862710.1016/j.lfs.2020.11862733169684
    [Google Scholar]
  81. SharmaH. ChandraP. VermaA. PandeyS.N. KumarP. SighA. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders.Eur. Chem. Bull.202312515751596
    [Google Scholar]
  82. AbrahamD. FeherJ. ScuderiG.L. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome.Exp. Gerontol.201911512213110.1016/j.exger.2018.12.00530529024
    [Google Scholar]
  83. PrasadK.N. A micronutrient mixture with collagen peptides, probiotics, cannabidiol, and diet may reduce aging, and development and progression of age-related Alzheimer’s disease, and improve its treatment.Mech. Ageing Dev.202321011175710.1016/j.mad.2022.11175736460123
    [Google Scholar]
  84. SharmaH. RaniT. KhanS. An insight into neuropathic pain: A systemic and up-to-date review.IJPSR2023142607621
    [Google Scholar]
  85. SharmaH. PathakR. KumarN. NogaiL. MishraR. BhandariM. Endocannabinoid system: Role in depression, recompense, and pain control.J Surv Fish Sci2023104S27432751
    [Google Scholar]
  86. MombelliE. MarizzoniM. LopizzoN. RosaM. MorettiD.V. CattaneoA.P. 0741 Effect of a probiotic administration on inflammatory profile and clinical features in patients with Alzheimer’s disease.Eur. Neuropsychopharmacol.202153S54110.1016/j.euroneuro.2021.10.808
    [Google Scholar]
  87. DuY. LiY. XuX. Probiotics for constipation and gut microbiota in Parkinson’s disease.Parkinsonism Relat. Disord.2022103929710.1016/j.parkreldis.2022.08.02236087572
    [Google Scholar]
  88. AmaniR. MehrabaniS. Chapter 34 -Prebiotics and probiotics and Parkinson’s disease.In: Preedy Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders VRBTT.Academic Press2023641673
    [Google Scholar]
  89. BovenziR. ContiM. DegoliG.R. Shaping the course of early-onset Parkinson’s disease: Insights from a longitudinal cohort.Neurol. Sci.20234493151315910.1007/s10072‑023‑06826‑537140831
    [Google Scholar]
  90. SurguchovA. SurguchevA. Synucleins: New data on misfolding, aggregation and role in diseases.Biomedicines20221012324110.3390/biomedicines1012324136551997
    [Google Scholar]
  91. BeuraS.K. PanigrahiA.R. YadavP. SinghS.K. Role of platelet in Parkinson’s disease: Insights into pathophysiology & theranostic solutions.Ageing Res. Rev.20228010168110.1016/j.arr.2022.10168135798236
    [Google Scholar]
  92. Martinez-BanaclochaM. Proteomic complexity in parkinson’s disease: A redox signaling perspective of the pathophysiology and progression.Neuroscience202145328730010.1016/j.neuroscience.2020.11.00633212217
    [Google Scholar]
  93. BolognaM. Pathophysiology of motor symptoms in Parkinson’s disease: Role of primary motor cortex.J. Neurol. Sci.202142911790910.1016/j.jns.2021.117909
    [Google Scholar]
  94. GhalandariN. AssarzadeganF. MahdaviH. JamshidiE. EsmailyH. Evaluating the effectiveness of probiotics in relieving constipation in Parkinson’s disease: A systematic review and meta-analysis.Heliyon202393e1431210.1016/j.heliyon.2023.e1431236938477
    [Google Scholar]
  95. LinC.H. LaiH.C. WuM.S. Gut-oriented disease modifying therapy for Parkinson’s disease.J. Formos. Med. Assoc.2023122191810.1016/j.jfma.2022.09.01036182642
    [Google Scholar]
  96. RamalhoL.S. Nascimento-CarvalhoB. Role of the sympathetic nervous system in amyotrophic lateral sclerosis (ALS).Free Radic. Biol. Med.2023208S164S165
    [Google Scholar]
  97. VautierA. LebretonA.L. CodronP. AwadaZ. GohierP. CassereauJ. Retinal vessels as a window on amyotrophic lateral sclerosis pathophysiology: A systematic review.Rev. Neurol.2023179654856210.1016/j.neurol.2022.11.01036842953
    [Google Scholar]
  98. GoutmanS.A. HardimanO. Al-ChalabiA. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis.Lancet Neurol.202221546547910.1016/S1474‑4422(21)00414‑235334234
    [Google Scholar]
  99. FeldmanE.L. GoutmanS.A. PetriS. Amyotrophic lateral sclerosis.Lancet2022400103601363138010.1016/S0140‑6736(22)01272‑736116464
    [Google Scholar]
  100. Vázquez-CostaJ.F. Campins-RomeuM. Martínez-PayáJ.J. New insights into the pathophysiology of fasciculations in amyotrophic lateral sclerosis: An ultrasound study.Clin. Neurophysiol.2018129122650265710.1016/j.clinph.2018.09.01430292684
    [Google Scholar]
  101. AsgariS. PourjavadiA. LichtT.R. BoisenA. AjalloueianF. Polymeric carriers for enhanced delivery of probiotics.Adv. Drug Deliv. Rev.2020161-16212110.1016/j.addr.2020.07.01432702378
    [Google Scholar]
  102. RossK. Psychobiotics: Are they the future intervention for managing depression and anxiety? A literature review.Explore202319566968010.1016/j.explore.2023.02.00736868988
    [Google Scholar]
  103. MitraS. DashR. NishanA.A. HabibaS.U. MoonI.S. Brain modulation by the gut microbiota: From disease to therapy.J. Adv. Res.20235315317310.1016/j.jare.2022.12.00136496175
    [Google Scholar]
  104. AshiqueS. PalR. SharmaH. MishraN. GargA. Unraveling the emerging niche role of extracellular vesicles (EVs) in traumatic brain injury (TBI).CNS Neurol. Disord. Drug Targets20242310.2174/011871527328815524020106504138351688
    [Google Scholar]
  105. LeeY. NguyenT.L. RohH. Mechanisms underlying probiotic effects on neurotransmission and stress resilience in fish via transcriptomic profiling.Fish Shellfish Immunol.202314110906310.1016/j.fsi.2023.10906337678478
    [Google Scholar]
  106. JanT. NegiR. SharmaB. Diversity, distribution and role of probiotics for human health: Current research and future challenges.Biocatal. Agric. Biotechnol.20235310288910.1016/j.bcab.2023.102889
    [Google Scholar]
  107. ChanK.W. HebertJ. Radford-SmithD. AnthonyD.C. BurnetP.W.J. Live or heat-killed probiotic administration reduces anxiety and central cytokine expression in BALB/c mice, but differentially alters brain neurotransmitter gene expression.Neuropharmacology202323510956510.1016/j.neuropharm.2023.10956537150398
    [Google Scholar]
  108. AshiqueS. BhowmickM. PalR. KhatoonH. KumarP. SharmaH. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success.Adv. Cancer Biol. Metastasis202410100114
    [Google Scholar]
  109. RiandaD. SuradijonoS.H.R. SetiawanE.A. Long-term benefits of probiotics and calcium supplementation during childhood, and other biomedical and socioenvironmental factors, on adolescent neurodevelopmental outcomes.J. Funct. Foods20229110501410.1016/j.jff.2022.105014
    [Google Scholar]
  110. KumarP. PandeyS. AhmadF. VermaA. SharmaH. AshiqueS. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.20239131
    [Google Scholar]
  111. WuH. LiuL. MaM. ZhangY. Modulation of blood-brain tumor barrier for delivery of magnetic hyperthermia to brain cancer.J. Control. Release202335524825810.1016/j.jconrel.2023.01.07236736432
    [Google Scholar]
  112. HashimotoY. CampbellM. Tight junction modulation at the blood-brain barrier: Current and future perspectives.Biochim. Biophys. Acta Biomembr.20201862918329810.1016/j.bbamem.2020.18329832353377
    [Google Scholar]
  113. ConstansC. AhnineH. SantinM. Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier.J. Control. Release202031822323110.1016/j.jconrel.2019.12.00631816362
    [Google Scholar]
  114. DiMattiaZ. DamaniJ.J. Van SyocE. RogersC.J. Effect of probiotic supplementation on intestinal permeability in overweight and obesity: A systematic review of randomized controlled trials and animal studies.Adv. Nutr.202310016238072119
    [Google Scholar]
  115. RudykM. HurmachY. SerhiichukT. Multi-probiotic consumption sex-dependently interferes with MSG-induced obesity and concomitant phagocyte pro-inflammatory polarization in rats: Food for thought about personalized nutrition.Heliyon202392e1338110.1016/j.heliyon.2023.e1338136816299
    [Google Scholar]
  116. Rezaei AslZ. SepehriG. SalamiM. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease.Behav. Brain Res.201937611218310.1016/j.bbr.2019.11218331472194
    [Google Scholar]
  117. VaresiA. CampagnoliL.I.M. ChirumboloS. The brain-gut-microbiota interplay in depression: A key to design innovative therapeutic approaches.Pharmacol. Res.202319210679910.1016/j.phrs.2023.10679937211239
    [Google Scholar]
  118. AndradeM.E.R. AraújoR.S. de BarrosP.A.V. The role of immunomodulators on intestinal barrier homeostasis in experimental models.Clin. Nutr.20153461080108710.1016/j.clnu.2015.01.01225660317
    [Google Scholar]
  119. KovarikJ.E. Method for reducing the likelihood of developing bladder or colorectal cancer in an individual human being. Google Patents2021
    [Google Scholar]
  120. KovarikJ.E. Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease. Google Patents2019
    [Google Scholar]
  121. MulderIE YuilleS EttorreA AhmedS FotiadouP UrciaJRI Compositions comprising a bacterial strain of the genus Megasphera and uses thereof S.I.Patent 3600364T12021
    [Google Scholar]
  122. KovarikJ.E. KovarikK.R. Method and system for preventing migraine headaches, cluster headaches and dizziness.Google Patents2018
    [Google Scholar]
  123. KovarikK.R. KovarikJ.E. Method and system for targeting the microbiome to promote health and treat allergic and inflammatory diseasesU.S. Patent 9457077B22016
    [Google Scholar]
  124. BrittonR.A. HoffmannD.E. KhorutsA. Probiotics and the microbiome—how can we help patients make sense of probiotics?Gastroenterology2021160261462310.1053/j.gastro.2020.11.04733307023
    [Google Scholar]
  125. MohantaS. GoswamiC. TRP channels in the gut: Effect of probiotics and phyto-nutraceuticals on gut-brain-immune axis. In: Kellershohn J, Russell IBTPB, Eds.Academic Press. KellershohnJ. RussellI.B.T.P.B. Panda, SK202121323310.1016/B978‑0‑12‑818588‑9.00004‑8
    [Google Scholar]
  126. RathourD. ShahS. KhanS. Role of gut microbiota in depression: Understanding molecular pathways, recent research, and future direction.Behav. Brain Res.202343611408110.1016/j.bbr.2022.11408136037843
    [Google Scholar]
  127. ŁoniewskiI. MiseraA. Skonieczna-ŻydeckaK. Major Depressive Disorder and gut microbiota – Association not causation. A scoping review.Prog. Neuropsychopharmacol. Biol. Psychiatry202110611011110.1016/j.pnpbp.2020.11011132976952
    [Google Scholar]
  128. RameshS.V. KrishnanV. PraveenS. HebbarK.B. Dietary prospects of coconut oil for the prevention and treatment of Alzheimer’s disease (AD): A review of recent evidences.Trends Food Sci. Technol.202111220121110.1016/j.tifs.2021.03.046
    [Google Scholar]
/content/journals/cprr/10.2174/0126660822304321240520075036
Loading
/content/journals/cprr/10.2174/0126660822304321240520075036
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test