Skip to content
2000
Volume 21, Issue 4
  • ISSN: 2666-0822
  • E-ISSN: 2666-0830

Abstract

Nanotechnology has emerged as a promising frontier in the field of drug delivery, offering unprecedented opportunities for precise and targeted interventions in neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. This review explores recent advancements in nanotechnology-based delivery systems designed to enhance drug transport across the blood-brain barrier and facilitate targeted drug delivery to the central nervous system. The unique challenges posed by the intricate central nervous system architecture, particularly in the context of Parkinson's and Alzheimer's diseases, necessitate innovative solutions to improve therapeutic outcomes. The review comprehensively discusses various nanocarrier platforms, including liposomes, polymeric nanoparticles, dendrimers, and exosomes, and their potential applications in drug delivery to the central nervous system (CNS). Special emphasis is placed on addressing the multifaceted challenges associated with neurodegenerative diseases, such as the need for sustained drug release, protection of therapeutic agents from enzymatic degradation, and the efficient crossing of the blood-brain barrier. Furthermore, the review highlights recent breakthroughs in nanotechnology-driven diagnostic and therapeutic approaches, ranging from early detection of disease biomarkers to the targeted delivery of neuroprotective agents. The potential of personalized medicine and the integration of advanced imaging techniques with nanotechnology for precise disease monitoring are also discussed. In conclusion, this review provides a comprehensive overview of recent advancements in nanotechnology-based delivery systems tailored for CNS targeting, with a specific focus on Parkinson's and Alzheimer's diseases. The synthesis of current research findings underscores the transformative potential of nanotechnology in reshaping the landscape of therapeutic strategies for neurodegenerative disorders, offering hope for improved patient outcomes and the development of novel treatment modalities.

Loading

Article metrics loading...

/content/journals/cprr/10.2174/0126660822306813240516113807
2024-05-28
2025-11-14
Loading full text...

Full text loading...

References

  1. FeiginV.L. NicholsE. AlamT. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X30879893
    [Google Scholar]
  2. Van GiauV. AnS.S.A. BagyinszkyE. KimS. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders.Mol. Cell. Toxicol.20151128914310.1007/s13273‑015‑0011‑9
    [Google Scholar]
  3. HanifS. MuhammadP. ChesworthR. Nanomedicine-based immunotherapy for central nervous system disorders.Acta Pharmacol. Sin.202041793695310.1038/s41401‑020‑0429‑z32467570
    [Google Scholar]
  4. FengL. WangH. XueX. Recent progress of nanomedicine in the treatment of central nervous system diseases.Adv. Ther.202035190015910.1002/adtp.201900159
    [Google Scholar]
  5. NguyenT.T. NguyenT.T.D. NguyenT.K.O. VoT.K. VoV.G. Advances in developing therapeutic strategies for Alzheimer’s disease.Biomed. Pharmacother.202113911162310.1016/j.biopha.2021.11162333915504
    [Google Scholar]
  6. JankovicJ. AguilarL.G. Current approaches to the treatment of Parkinson’s disease.Neuropsychiatr. Dis. Treat.20084474375710.2147/NDT.S200619043519
    [Google Scholar]
  7. TajesM. Ramos-FernándezE. Weng-JiangX. The blood-brain barrier: Structure, function and therapeutic approaches to cross it.Mol. Membr. Biol.201431515216710.3109/09687688.2014.93746825046533
    [Google Scholar]
  8. PajouheshH. LenzG.R. Medicinal chemical properties of successful central nervous system drugs.NeuroRx20052454155310.1602/neurorx.2.4.54116489364
    [Google Scholar]
  9. Van GiauV. AnS.S.A. HulmeJ.P. Mitochondrial therapeutic interventions in Alzheimer’s disease.J. Neurol. Sci.2018395627010.1016/j.jns.2018.09.03330292965
    [Google Scholar]
  10. NguyenT.T. VoT.K. VoG.V. Therapeutic strategies and nano-drug delivery applications in management of aging Alzheimer’s disease.Adv. Exp. Med. Biol.20211286Part II18319810.1007/978‑3‑030‑55035‑6_1333725354
    [Google Scholar]
  11. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  12. JohnsenK.B. MoosT. Revisiting nanoparticle technology for blood–brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes.J. Control. Release2016222324610.1016/j.jconrel.2015.11.03226658072
    [Google Scholar]
  13. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  14. HernandoS. Santos-VizcaínoE. IgartuaM. HernandezR.M. Targeting the central nervous system: From synthetic nanoparticles to extracellular vesicles—Focus on Alzheimer’s and Parkinson’s disease.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023155e189810.1002/wnan.189837157144
    [Google Scholar]
  15. KhatoonR. AlamM.A. SharmaP.K. Current approaches and prospective drug targeting to brain.J. Drug Deliv. Sci. Technol.20216110209810.1016/j.jddst.2020.102098
    [Google Scholar]
  16. NguyenT.T. Dung NguyenT.T. VoT.K. Nanotechnology-based drug delivery for central nervous system disorders.Biomed. Pharmacother.202114311211710.1016/j.biopha.2021.11211734479020
    [Google Scholar]
  17. GawaliP. SaraswatA. BhideS. GuptaS. PatelK. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a ‘golden gate’ for nanomedicine in preclinical studies?Nanomedicine (Lond.)202318216919010.2217/nnm‑2022‑025737042320
    [Google Scholar]
  18. ParkJ.K. JungJ. SubramaniamP. Graphite-coated magnetic nanoparticles as multimodal imaging probes and cooperative therapeutic agents for tumor cells.Small20117121647165210.1002/smll.20110001221560243
    [Google Scholar]
  19. ShankarR. JoshiM. PathakK. Lipid nanoparticles: a novel approach for brain targeting.Pharm. Nanotechnol.201862819310.2174/221173850666618061110041629886842
    [Google Scholar]
  20. RodàF. CaraffiR. PiccioliniS. Recent advances on surface-modified GBM targeted nanoparticles: targeting strategies and surface characterization.Int. J. Mol. Sci.2023243249610.3390/ijms2403249636768820
    [Google Scholar]
  21. MadhankumarA.B. Slagle-WebbB. MintzA. SheehanJ.M. ConnorJ.R. Interleukin-13 receptor–targeted nanovesicles are a potential therapy for glioblastoma multiforme.Mol. Cancer Ther.20065123162316910.1158/1535‑7163.MCT‑06‑048017172420
    [Google Scholar]
  22. ZhangH. LiR. LuX. MouZ. LinG. Docetaxel-loaded liposomes: preparation, pH sensitivity, Pharmacokinetics, and tissue distribution.J. Zhejiang Univ. Sci. B2012131298198910.1631/jzus.B120009823225853
    [Google Scholar]
  23. ShahriariM. ZahiriM. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Enzyme responsive drug delivery systems in cancer treatment.J. Control. Release201930817218910.1016/j.jconrel.2019.07.00431295542
    [Google Scholar]
  24. WangM. ThanouM. Targeting nanoparticles to cancer.Pharmacol. Res.2010622909910.1016/j.phrs.2010.03.00520380880
    [Google Scholar]
  25. PatabendigeA. JanigroD. The role of the blood–brain barrier during neurological disease and infection.Biochem. Soc. Trans.202351261362610.1042/BST2022083036929707
    [Google Scholar]
  26. ShabaniL. AbbasiM. AzarnewZ. AmaniA.M. VaezA. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience.Biomed. Eng. Online2023221110.1186/s12938‑022‑01062‑y36593487
    [Google Scholar]
  27. SaeediM. EslamifarM. KhezriK. DizajS.M. Applications of nanotechnology in drug delivery to the central nervous system.Biomed. Pharmacother.201911166667510.1016/j.biopha.2018.12.13330611991
    [Google Scholar]
  28. XieJ. ShenZ. AnrakuY. KataokaK. ChenX. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies.Biomaterials201922411949110.1016/j.biomaterials.2019.11949131546096
    [Google Scholar]
  29. HuangQ. ChenY. ZhangW. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases.J. Control. Release202436651953410.1016/j.jconrel.2023.12.05438182059
    [Google Scholar]
  30. ZouL.L. MaJ.L. WangT. YangT.B. LiuC.B. Cell-penetrating Peptide-mediated therapeutic molecule delivery into the central nervous system.Curr. Neuropharmacol.201311219720810.2174/1570159X1131102000623997754
    [Google Scholar]
  31. SteinbachJ.M. SeoY.E. SaltzmanW.M. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.Acta Biomater.201630496110.1016/j.actbio.2015.11.02926602822
    [Google Scholar]
  32. ZhouY. PengZ. SevenE.S. LeblancR.M. Crossing the blood-brain barrier with nanoparticles.J. Control. Release201827029030310.1016/j.jconrel.2017.12.01529269142
    [Google Scholar]
  33. LuC.T. ZhaoY.Z. WongH.L. CaiJ. PengL. TianX.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers.Int. J. Nanomedicine201492241225710.2147/IJN.S6128824872687
    [Google Scholar]
  34. PoeweW. SeppiK. TannerC.M. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.1328332488
    [Google Scholar]
  35. LafuenteJ.V. RequejoC. UgedoL. Nanodelivery of therapeutic agents in Parkinson’s disease.Prog Brain Res20192452637910.1016/bs.pbr.2019.03.00430961870
    [Google Scholar]
  36. Torres-OrtegaP.V. SaludasL. HanafyA.S. GarbayoE. Blanco-PrietoM.J. Micro- and nanotechnology approaches to improve Parkinson’s disease therapy.J. Control. Release201929520121310.1016/j.jconrel.2018.12.03630579984
    [Google Scholar]
  37. GhazyE. RahdarA. BaraniM. KyzasG.Z. Nanomaterials for Parkinson disease: Recent progress.J. Mol. Struct.2021123112969810.1016/j.molstruc.2020.129698
    [Google Scholar]
  38. PillayS. PillayV. ChoonaraY.E. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain.Int. J. Pharm.20093821-227729010.1016/j.ijpharm.2009.08.02119703530
    [Google Scholar]
  39. YoosefianM. RahmanifarE. EtminanN. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis.Artif. Cells Nanomed. Biotechnol.201846Suppl. 1434446
    [Google Scholar]
  40. FernandesC. MartinsC. FonsecaA. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor.ACS Appl. Mater. Interfaces20181046395573956910.1021/acsami.8b1722430352150
    [Google Scholar]
  41. Gholami DeramiH. GuptaP. WengK.C. Reversible photothermal modulation of electrical activity of excitable cells using polydopamine nanoparticles.Adv. Mater.20213332200880910.1002/adma.20200880934216406
    [Google Scholar]
  42. Monge-FuentesV. Biolchi MayerA. LimaM.R. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s Disease.Sci. Rep.20211111518510.1038/s41598‑021‑94175‑834312413
    [Google Scholar]
  43. ArotcarenaM.L. TeilM. DehayB. Autophagy in synucleinopathy: the overwhelmed and defective machinery.Cells20198656510.3390/cells806056531181865
    [Google Scholar]
  44. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: an emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd261418758474
    [Google Scholar]
  45. D’OnofrioM. MunariF. AssfalgM. Alpha-synuclein—nanoparticle interactions: Understanding, controlling and exploiting conformational plasticity.Molecules20202523562510.3390/molecules2523562533260436
    [Google Scholar]
  46. LiY. ChenZ. LuZ. “Cell-addictive” dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway.Theranostics20188195469548110.7150/thno.2829530555558
    [Google Scholar]
  47. NaskhiA. JabbariS. OthmanG.Q. Vitamin K1 as a potential molecule for reducing single-walled carbon nanotubes-stimulated α-synuclein structural changes and cytotoxicity.Int. J. Nanomedicine2019148433844410.2147/IJN.S22318231749617
    [Google Scholar]
  48. ZhaoN. YangX. CalvelliH.R. Antioxidant nanoparticles for concerted inhibition of α-synuclein fibrillization, and attenuation of microglial intracellular aggregation and activation.Front. Bioeng. Biotechnol.2020811210.3389/fbioe.2020.0011232154238
    [Google Scholar]
  49. NiuS. ZhangL.K. ZhangL. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model.Theranostics20177234435610.7150/thno.1656228042339
    [Google Scholar]
  50. LyuJ. LongX. XieT. Copper oxide nanoparticles promote α-synuclein oligomerization and underlying neurotoxicity as a model of Parkinson’s disease.J. Mol. Liq.202132311505110.1016/j.molliq.2020.115051
    [Google Scholar]
  51. RuotoloR. De GiorgioG. MinatoI. BianchiM. BussolatiO. MarmiroliN. Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson’s disease.Nanomaterials (Basel)202010223510.3390/nano1002023532013138
    [Google Scholar]
  52. ChaparroC.I.P. SimõesB.T. BorgesJ.P. CastanhoM.A.R.B. SoaresP.I.P. NevesV. A promising approach: Magnetic nanosystems for Alzheimer’s disease theranostics.Pharmaceutics2023159231610.3390/pharmaceutics1509231637765284
    [Google Scholar]
  53. BagyinszkyE. GiauV.V. ShimK. SukK. AnS.S.A. KimS. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis.J. Neurol. Sci.201737624225410.1016/j.jns.2017.03.03128431620
    [Google Scholar]
  54. Serrano-PozoA. FroschM.P. MasliahE. HymanB.T. Neuropathological alterations in Alzheimer disease.Cold Spring Harb. Perspect. Med.201111a00618910.1101/cshperspect.a00618922229116
    [Google Scholar]
  55. TsatsanisA. WongB.X. GunnA.P. Amyloidogenic processing of Alzheimer’s disease β-amyloid precursor protein induces cellular iron retention.Mol. Psychiatry20202591958196610.1038/s41380‑020‑0762‑032444869
    [Google Scholar]
  56. EftekharzadehB. DaigleJ.G. KapinosL.E. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease.Neuron2018995925940.e710.1016/j.neuron.2018.07.03930189209
    [Google Scholar]
  57. LiuZ. GaoX. KangT. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide.Bioconjug. Chem.2013246997100710.1021/bc400055h23718945
    [Google Scholar]
  58. MourtasS. CanoviM. ZonaC. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide.Biomaterials20113261635164510.1016/j.biomaterials.2010.10.02721131044
    [Google Scholar]
  59. MatsuzakiK. Physicochemical interactions of amyloid β-peptide with lipid bilayers.Biochim. Biophys. Acta Biomembr.2007176881935194210.1016/j.bbamem.2007.02.00917382287
    [Google Scholar]
  60. PederzoliF. RuoziB. DuskeyJ. Nanomedicine against Aβ aggregation by β–sheet breaker peptide delivery: In vitro evidence.Pharmaceutics2019111157210.3390/pharmaceutics1111057231683907
    [Google Scholar]
  61. ZhangH. HaoC. QuA. Light‐induced chiral iron copper selenide nanoparticles prevent β‐amyloidopathy in vivo.Angew. Chem. Int. Ed.202059187131713810.1002/anie.20200202832067302
    [Google Scholar]
  62. JeonS.G. ChaM.Y. KimJ. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice.Nanomedicine 20191729730710.1016/j.nano.2019.02.00430794963
    [Google Scholar]
  63. HoppeJ.B. CoradiniK. FrozzaR.L. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway.Neurobiol. Learn. Mem.201310613414410.1016/j.nlm.2013.08.00123954730
    [Google Scholar]
  64. HuoX. ZhangY. JinX. LiY. ZhangL. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease.J. Photochem. Photobiol. B20191909810210.1016/j.jphotobiol.2018.11.00830504054
    [Google Scholar]
  65. CarradoriD. BalducciC. ReF. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model.Nanomedicine 201814260961810.1016/j.nano.2017.12.00629248676
    [Google Scholar]
  66. ZhangL. ZhaoP. YueC. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease.Biomaterials201919739340410.1016/j.biomaterials.2019.01.03730703744
    [Google Scholar]
  67. GaoN. SunH. DongK. RenJ. QuX. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease.Chemistry201521282983510.1002/chem.20140456225376633
    [Google Scholar]
  68. ManafiRadA FarzadfarF HabibiL Is amyloid-β an innocent bystander and marker in Alzheimer’s disease? Is the liability of multivalent cation homeostasis and its influence on amyloid-β function the real mechanism?J. Alzheimers Dis.2014421698510.3233/JAD‑14032124787921
    [Google Scholar]
  69. OkudaM. HijikuroI. FujitaY. Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors.Bioorg. Med. Chem. Lett.201626205024502810.1016/j.bmcl.2016.08.09227624076
    [Google Scholar]
  70. GaoC. ChuX. GongW. RETRACTED ARTICLE: Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease.J. Nanobiotechnology20201817110.1186/s12951‑020‑00626‑132404183
    [Google Scholar]
  71. GhalandariB. AsadollahiK. ShakerizadehA. Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy.J. Photochem. Photobiol. B201919213114010.1016/j.jphotobiol.2019.01.01230735954
    [Google Scholar]
  72. SonawaneS.K. AhmadA. ChinnathambiS. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease.ACS Omega201947128331284010.1021/acsomega.9b0141131460408
    [Google Scholar]
  73. KlaassensB.L. van GervenJ.M.A. KlaassenE.S. van der GrondJ. RomboutsS.A.R.B. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer’s disease.Neuroimage201919914315210.1016/j.neuroimage.2019.05.04431112788
    [Google Scholar]
  74. MutluN.B. DeğimZ. YılmazŞ. EşsizD. NacarA. New perspective for the treatment of Alzheimer diseases: Liposomal rivastigmine formulations.Drug Dev. Ind. Pharm.201137777578910.3109/03639045.2010.54126221231901
    [Google Scholar]
  75. ZhangH. ZhaoY. YuM. Reassembly of native components with donepezil to execute dual-missions in Alzheimer’s disease therapy.J. Control. Release2019296142810.1016/j.jconrel.2019.01.00830639387
    [Google Scholar]
  76. CanoA. EttchetoM. ChangJ.H. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.01030876953
    [Google Scholar]
  77. RifaaiR.A. MokhemerS.A. SaberE.A. El-AleemS.A.A. El-TahawyN.F.G. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in Alzheimer’s disease.J. Chem. Neuroanat.202010710179510.1016/j.jchemneu.2020.10179532464160
    [Google Scholar]
  78. KaushikA. JayantR.D. BhardwajV. NairM. Personalized nanomedicine for CNS diseases.Drug Discov. Today20182351007101510.1016/j.drudis.2017.11.01029155026
    [Google Scholar]
  79. LoureiroJ.A. GomesB. FrickerG. CoelhoM.A.N. RochaS. PereiraM.C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment.Colloids Surf. B Biointerfaces201614581310.1016/j.colsurfb.2016.04.04127131092
    [Google Scholar]
  80. CanoviM. MarkoutsaE. LazarA.N. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue.Biomaterials201132235489549710.1016/j.biomaterials.2011.04.02021529932
    [Google Scholar]
  81. PanghalA. FloraS.J.S. Nanotechnology in the diagnostic and therapy for Alzheimer’s disease.Biochim. Biophys. Acta, Gen. Subj.20241868313055910.1016/j.bbagen.2024.13055938191034
    [Google Scholar]
  82. VermaR. SartajA. QizilbashF.F. An overview of the neuropharmacological potential of thymoquinone and its targeted delivery prospects for CNS disorder.Curr. Drug Metab.202223644745910.2174/138920022366622060814250635676849
    [Google Scholar]
  83. TaleuzzamanM. JainP. VermaR. IqbalZ. MirzaM.A. Eugenol as a potential drug candidate: A review.Curr. Top. Med. Chem.202121201804181510.2174/156802662166621070114143334218781
    [Google Scholar]
  84. JahangirM.A. TaleuzzamanM. KalaC. GilaniS.J. Advancements in polymer and lipid-based nanotherapeutics for cancer drug targeting.Curr. Pharm. Des.202026405119512710.2174/138161282699920082017325332867646
    [Google Scholar]
  85. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.124418727730820
    [Google Scholar]
/content/journals/cprr/10.2174/0126660822306813240516113807
Loading
/content/journals/cprr/10.2174/0126660822306813240516113807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test