Current Protein and Peptide Science - Volume 9, Issue 2, 2008
Volume 9, Issue 2, 2008
-
-
Rooteomics: The Challenge of Discovering Plant Defense-Related Proteins in Roots
In recent years, a strong emphasis has been given in deciphering the function of genes unraveled by the completion of several genome sequencing projects. In plants, functional genomics has been massively used in order to search for gene products of agronomic relevance. As far as root-pathogen interactions are concerned, several genes are recognized to provide tolerance/resistance against potential invaders. However, very few proteins have been identified by using current proteomic approaches. One of the major drawbacks for the successful analysis of root proteomes is the inherent characteristics of this tissue, which include low volume content and high concentration of interfering substances such as pigments and phenolic compounds. The proteome analysis of plant-pathogen interactions provides important information about the global proteins expressed in roots in response to biotic stresses. Moreover, several pathogenic proteins superimpose the plant proteome and can be identified and used as targets for the control of viruses, bacteria, fungi and nematode pathogens. The present review focuses on advances in different proteomic strategies dedicated to the challenging analysis of plant defense proteins expressed during bacteria-, fungi- and nematode-root interactions. Recent developments, limitations of the current techniques, and technological perspectives for root proteomics aiming at the identification of resistance- related proteins are discussed.
-
-
-
Structure-based Drug Design Targeting Biosynthesis of Isoprenoids: A Crystallographic State of the Art of the Involved Enzymes
Authors: J. d. Ruyck and J. WoutersBiosynthesis of the universal terpenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), from three acetyl CoA moieties through mevalonate was studied extensively in the 1950s. For several decades, the mevalonate paradigm reigned supreme and a mevalonate origin was attributed to a growing number of natural products, in many cases erroneously. Besides this biosynthetic pathway, the existence of a second one leading to IPP and DMAPP through 1-deoxy-D-xylulose 5-phosphate and 2C-methyl-D-erythritol 4-phosphate was discovered more recently in plants and some eubacteria. This pathway is widely distributed in the bacterial kingdom including major human pathogens, such as Mycobacterium tuberculosis or Helicobacter pylori and is also essential in the malaria vector Plasmodium falciparum. During the last few years, the genes, enzymes, intermediates and mechanisms of the biosynthetic route have been elucidated by a combination of methods including comparative genomics, enzymology, advanced NMR technology and crystallography. The present crystallographic review of enzymes involved in isoprenoid biosynthesis will be useful for understanding the various catalytic mechanisms and could potentially help for structure-based drug design.
-
-
-
Engineering the Protein Folding Landscape in Gram-Negative Bacteria
Authors: Thomas J. Mansell, Adam C. Fisher and Matthew P. DeLisaGram-negative bacteria, especially Escherichia coli, are often the preferred hosts for recombinant protein production because of their fast doubling times, ability to grow to high cell density, propensity for high recombinant protein titers and straightforward protein purification techniques. The utility of simple bacteria in such studies continues to improve as a result of an ever-increasing body of knowledge regarding their native protein biogenesis machinery. From translation on the ribosome to interaction with cytosolic accessory factors to transport across the inner membrane into the periplasmic space, cellular proteins interact with many different types of cellular machinery and each interaction can have a profound effect on the protein folding process. This review addresses key aspects of cellular protein folding, solubility and expression in E. coli with particular focus on the elegant biological machinery that orchestrates the transition from nascent polypeptide to folded, functional protein. Specifically highlighted are a variety of different techniques to intentionally alter the folding environment of the cell as a means to understand and engineer intracellular protein folding and stability.
-
-
-
The Structural Analysis of Large Noncovalent Oxygen Binding Proteins by MALLS and ESI-MS: A Review on Annelid Hexagonal Bilayer Hemoglobin and Crustacean Hemocyanin
Authors: Matthieu Bruneaux, Morgane Rousselot, Emmanuelle Leize, Francois H. Lallier and Franck ZalUnderstanding the function of macromolecular complexes is related to a precise knowledge of their structure. These large complexes are often fragile high molecular mass noncovalent multimeric proteins. Classical biochemical methods for determination of their native mass and subunit composition were used to resolve their quaternary structure, sometimes leading to different models. Recently, the development of mass spectrometry and multi-angle laser light scattering (MALLS) has enabled absolute determination of native masses and subunit masses. Electrospray ionization mass spectrometry (ESI-MS) was used in denaturing and native conditions to probe subunit composition and noncovalent assemblies masses up to 2.25 MDa. In a complementary way, MALLS provides mass and size estimation in various aqueous solvents. ESI-MS method can also give insights into post-translational modifications (glycosylation, disulfide bridges …). By combining native mass and subunit composition data, structural models can be proposed for large edifices such as annelid extracellular hexagonal bilayer hemoglobins (HBL-Hb) and crustacean hemocyanins (Hc). Association/dissociation mechanisms, protein-protein interactions, structural diversity among species and environmental adaptations can also be addressed with these methods. With their absolute mass determination, the very high precision of spectrometry and the versatile nature of light scattering, ESI-MS and MALLS have provided a wealth of data helping to resolve parts of controversies for HBL-Hb models and opening access to new fields of investigation in structural diversity and molecular adaptation. In this review we will focus on annelid HBL-Hb and on crustacean Hc and on the original contributions of ESIMS and MALLS in this field.
-
-
-
Molecular Dynamics Simulations of Proteins and Peptides: From Folding to Drug Design
Authors: Giulia Morra, Massimiliano Meli and Giorgio ColomboComputer simulations of proteins, lipids and nucleic acids at equilibrium have become essentially routine. However, the fact remains that complete sampling of conformational space continues to be a bottle-neck in the field. The challenge for the future is to overcome such problems and use computational approaches to understand recognition and spontaneous self-organization in biomolecular systems (folding, aggregation and assembly of complexes), processes that cannot be directly observed experimentally. In this review, examples illustrating the extent to which simulations can be used to understand these phenomena in biomolecular systems will be presented along with examples of methodological developments to increase our physical understanding of the processes. The study cases will cover the problems of peptidereceptor recognition and the use of the information obtained for the design of new non-peptidic ligands; the study of the folding mechanism of small proteins and finally the study of the initial stages of peptide self-aggregation.
-
-
-
Diversity in Structure and Function of Tethering Complexes: Evidence for Different Mechanisms in Vesicular Transport Regulation
Authors: D. Kummel and U. HeinemannThe term ‘tethering factor’ has been coined for a heterogeneous group of proteins that all are required for protein trafficking prior to vesicle docking and SNARE-mediated membrane fusion. Two groups of tethering factors can be distinguished, long coiled-coil proteins and multi-subunit complexes. To date, eight such protein complexes have been identified in yeast, and they are required for different trafficking steps. Homologous complexes are found in all eukaryotic organisms, but conservation seems to be less strict than for other components of the trafficking machinery. In fact, for most proposed multi-subunit tethers their ability to actually bridge two membranes remains to be shown. Here we discuss recent progress in the structural and functional characterization of tethering complexes and present the emerging view that the different complexes are quite diverse in their structure and the molecular mechanisms underlying their function. TRAPP and the exocyst are the structurally best characterized tethering complexes. Their comparison fails to reveal any similarity on a structural level. Furthermore, the interactions with regulatory Rab GTPases vary, with TRAPP acting as a nucleotide exchange factor and the exocyst being an effector. Considering these differences among the tethering complexes as well as between their yeast and mammalian orthologs which is apparent from recent studies, we suggest that tethering complexes do not mediate a strictly conserved process in vesicular transport but are diverse regulators acting after vesicle budding and prior to membrane fusion.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
