Current Protein and Peptide Science - Volume 5, Issue 2, 2004
Volume 5, Issue 2, 2004
-
-
What is the Structure of the RecA-DNA Filament?
Authors: X. Yu, M. S. VanLoock, S. Yang, J. T. Reese and E. H. EgelmanThe bacterial RecA protein has been a model system for understanding how a protein can catalyze homologous genetic recombination. RecA-like proteins have now been characterized from many organisms, from bacteriophage to humans. Some of the RecA-like proteins, including human RAD51, appear to function as helical filaments formed on DNA. However, we currently have high resolution structures of inactive forms of the protein, and low resolution structures of the active complexes formed by RecA-like proteins on DNA in the presence of ATP or ATP analogs. Within a crystal of the E. coli RecA protein, a helical polymer exists, and it has been widely assumed that this polymer is quite similar to the active helical filament formed on DNA. Recent developments have suggested that this may not be the case.
-
-
-
Mechano-chemical Coupling of Molecular Motors Revealed by Single Molecule Measurements
Authors: Yoshiharu Ishii, Masayoshi Nishiyama and Toshio YanagidaSingle molecule measurements have allowed series of kinetic events of biomolecules to be monitored without interruption. The stepwise movement of molecular motors was measured and analyzed in relation to the hydrolysis reaction of ATP. In the case of kinesin, forward and backward steps occurred stochastically at the same chemical state. The directional movement was explained by the asymmetric potential created by the interaction between kinesin and microtubules. Similarly thermal Brownian movement of myosin during the hydrolysis of single ATP molecules was biased through an asymmetric potential, resulting in directional movement. Thus, single molecule measurements have provided new approaches to analyze the function of molecular motors which often consist of several different events.
-
-
-
Mechanisms of ATPases - A Multi-Disciplinary Approach
Authors: Mathieu Rappas, Hajime Niwa and Xiaodong ZhangATPases are important molecular machines that convert the chemical energies stored in ATP to mechanical actions within the cell. ATPases are among the most abundant proteins with diverse functions involved in almost every cellular pathway. The well characterised ATPases include the various motor proteins responsible for cargo transfers, cell motilities, and muscle contractions; the protein degradation machinery - the proteasome; the ATP synthase, F-ATPase; and the chaperone systems. Other ATPases include DNA helicases and DNA replication complex; proteins responsible for protein / complex disassembly; and certain gene regulators. It is beyond the scope of this review to cover the complete range of ATPases. Instead, we will focus on a few representative ATPases, chosen based on their diverse mechanisms and properties. Furthermore, this review is by no means trying to cover comprehensively the literature for each ATPase nor the historical aspects in each field. We will focus on describing the various techniques being employed to derive the mechanisms and properties of the chosen ATPases. Among them, high and low resolution structural studies combined with biochemical assays seem to be the dominant technical advances adapted to reveal mechanisms for most of the ATPases except the bacterial sigma54 activators, whose mechanism of action is mostly derived from large amount of biochemical studies. A number of them, especially the F-ATPase and motor proteins, have been studied successfully by various single molecule and imaging techniques. We will therefore discuss them in greater details in order to describe the wide range techniques being utilised.
-
-
-
Complex II from a Structural Perspective
Authors: Rob Horsefield, So Iwata and Bernadette ByrneThe super-macromolecular complex, succinate:quinone oxidoreductase (SQR, Complex II, succinate dehydrogenase) couples the oxidation of succinate in the matrix / cytoplasm to the reduction of quinone in the membrane. This function directly connects the Krebs cycle and the aerobic respiratory chain. Until the recent first report of the structure of SQR from Escherichia coli (E. coli ) the structure-function relationships in SQR have been inferred from the structures of the homologous QFR, which catalyses the same reaction in the opposite direction. The structure of SQR from E. coli, analogous to the mitochondrial respiratory Complex II, has provided new insight into SQR's molecular design and mechanism, revealing the electron transport pathway through the enzyme. Comparison of the structures of SQR, QFR and other related flavoproteins shows how common amino acid residues at the interface of two domains facilitate the inter-conversion of succinate and fumarate. Additionally, the structure has provided a possible explanation as to why certain organisms utilise both SQR and QFR despite the fact that both can catalyse the interconversion of succinate and fumarate, in vitro and in vivo. Here we review how this structure has advanced our knowledge of this important enzyme and compare the structural information to other members of the Complex II superfamily and related flavoproteins.
-
-
-
New Advances in Normal Mode Analysis of Supermolecular Complexes and Applications to Structural Refinement
By Jianpeng MaNormal mode analysis is an effective computational method for studying large-amplitude low-frequency molecular deformations that are ubiquitously involved in the functions of biological macromolecules, especially supermolecular complexes. The recent years have witnessed a substantial advance in methodology development in the field. This review is intended to summarize some of the important advances that enable one to simulate deformations of supermolecular complexes at expended resolution- and length-scales, with particular emphasis on the implications in structural refinement against lowto intermediate-resolution structural data such as those from electron cryomicroscopy and fibre diffraction.
-
-
-
Physical Mechanisms and Biological Significance of Supramolecular Protein Self-Assembly
Authors: Alex Kentsis and Katherine L.B. BordenIn living cells, chemical reactions of metabolism, information processing, growth and development are organized in a complex network of interactions. At least in part, the organization of this network is accomplished as a result of physical assembly by supramolecular scaffolds. Indeed, most proteins function in cells within the context of multimeric or supramolecular assemblies. With the increasing availability of atomic structures and molecular thermodynamics, it is possible to recast the problem of non-covalent molecular self-assembly from a unified perspective of structural thermodynamics and kinetics. Here, we present a generalized theory of self-assembly based on Wegner's kinetic model and use it to delineate three physical mechanisms of self-assembly: as limited by association of assembly units (nucleation), by association of monomers (isodesmic), and by conformational reorganization of monomers that is coupled to assembly (conformational). Thus, we discuss actin, tubulin, clathrin, and the capsid of icosahedral cowpea chlorotic mottle virus with respect to assembly of architectural scaffolds that perform largely mechanical functions, and pyruvate dehydrogenase, and RING domain proteins PML, arenaviral Z, and BRCA1:BARD1 with regard to assembly of supramolecular enzymes with metabolic and chemically directive functions. In addition to the biological functions made possible by supramolecular self-assembly, such as mesoscale mechanics of architectural scaffolds and metabolic coupling of supramolecular enzymes, we show that the physical mechanisms of selfassembly and their structural bases are biologically significant as well, having regulatory roles in both formation and function of the assembled structures in health and disease.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
