Current Protein and Peptide Science - Volume 24, Issue 3, 2023
Volume 24, Issue 3, 2023
-
-
Tight Junctions in the Auditory System: Structure, Distribution and Function
Authors: Xiang Gao, Changsheng Chen, Shuai Shi, Fuping Qian, Dong Liu and Jie GongTight junctions act as a barrier between epithelial cells to limit the transport of the paracellular substance, which is a required function in various tissues to sequestrate diverse microenvironments and maintain a normal physiological state. Tight junctions are complexes that contain various proteins, like transmembrane proteins, scaffolding proteins, signaling proteins, etc. Defects in those tight junction- related proteins can lead to hearing loss in humans which is also recapitulated in many model organisms. The disruption of the barrier between the endolymph and perilymph caused by tight junction abnormalities will affect the microenvironment of hair cells; and this could be the reason for this type of hearing loss. Besides their functions as a typical barrier and channel, tight junctions are also involved in many signaling networks to regulate gene expression, cell proliferation, and differentiation. This review will summarize the structures, localization, and related signaling pathways of hearingrelated tight junction proteins and their potential contributions to the hearing disorder.
-
-
-
Effect of the Ultraviolet Radiation on the Lens
More LessThe lens is a transparent, biconvex anatomical structure of the eyes responsible for light transmission and fine focusing on the retina. It is fundamentally constituted by water-soluble proteins called crystallins which are responsible for lens transparency due to their stable and highly organized disposition in the lens fiber cells. Some conformational changes and the subsequent aggregation of crystallins lead to loss of transparency in the lens and are the beginning of cataracts, which is the most frequent cause of reversible blindness in the world. Ultraviolet radiation is considered one of the risk factors for cataract development. The lens is exposed to radiation between 295 and 400 nm. This UV radiation may induce several processes that destroy the crystallins; the most significant is the oxidative stress due to increased free radicals formation. The oxidative stress is directly involved in modifications of the crystallin proteins leading to the formation of high molecular weight aggregates and then the subsequent opacification of the lens, known as cataracts. This review aims to summarize current knowledge about the damage of the lens proteins caused by ultraviolet radiation and its role in developing cataracts.
-
-
-
Leishmaniasis: Omics Approaches to Understand its Biology from Molecule to Cell Level
Authors: Indu Kumari, Dinesh Lakhanpal, Sandeep Swargam and Anupam Nath JhaLeishmaniasis is the second deadliest vector-borne, neglected tropical zoonotic disease and is found in a variety of clinical forms based on genetic background. Its endemic type is present in tropical, sub-tropical and Mediterranean areas around the world which accounts for a lot of deaths every year. Currently, a variety of techniques are available for detection of leishmaniasis each technique having it's own pros and cons. The advancing next-generation sequencing (NGS) techniques are employed to find out novel diagnostic markers based on single nucleotide variants. A total of 274 NGS studies are available in European Nucleotide Archive (ENA) portal (https://www.ebi.ac.uk/ena/browser/home) that focused on wild-type and mutated Leishmania, differential gene expression, miRNA expression, and detection of aneuploidy mosaicism by omics approaches. These studies have provided insights into the population structure, virulence, and extensive structural variation, including known and suspected drug resistance loci, mosaic aneuploidy and hybrid formation under stressed conditions and inside the midgut of the sandfly. The complex interactions occurring within the parasite-host-vector triangle can be better understood by omics approaches. Further, advanced CRISPR technology allows researchers to delete and modify each gene individually to know the importance of genes in the virulence and survival of the disease-causing protozoa. In vitro generation of Leishmania hybrids are helping to understand the mechanism of disease progression in its different stages of infection. This review will give a comprehensive picture of the available omics data of various Leishmania spp. which helped to reveal the effect of climate change on the spread of its vector, the pathogen survival strategies, emerging antimicrobial resistance and its clinical importance.
-
-
-
Significance of Complement Regulatory Protein Tetraspanins in the Male Reproductive System and Fertilization
Authors: Pooja Jangid, Umesh Rai, Amrita bakshi and Rajeev SinghFertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.
-
-
-
Integrin α3 Mediates Stemness and Invasion of Glioblastoma by Regulating POU3F2
Authors: Junchao Yao and Leilei WangBackground: Glioblastoma (GBM) is an aggressive brain tumor. Integrins have been implicated in the malignancy of GBM. A recent study demonstrated that integrin α3 (ITGA3) promoted the invasion of breast cancer cells by regulating transcriptional factor POU3F2. However, whether this also happened in GBM remained unknown. Methods: Therefore, we explored the relationship between ITGA3 and POU3F2 in GBM. We measured the expression of ITGA3 and POU3F2 in GBM tissues. We generated ITGA3 knockdown and POU3F2 knockdown GBM U87MG cells and the proliferation, migration and invasion, the expression of stemness markers and epithelial to mesenchymal transition (EMT) markers were measured. We transplanted ITGA3 knockdown and POU3F2 knockdown GBM U87MG cells into mice. The mice were treated with anti-ITGA3 antibody. The tumor sizes, the expression of stemness markers and epithelial-to-mesenchymal transition (EMT) markers were measured. Results: Both ITGA3 and POU3F2 were upregulated in GBM tissues. Knocking down ITGA3 resulted in reduced expression of POU3F2. Knocking down ITGA3 and POU3F2 suppressed U87MG cells proliferation, migration and invasion, inhibited the expression of stemness markers and prevented epithelial- to-mesenchymal transition. The transplantation of ITGA3 knockdown and POU3F2 knockdown U87MG cells decreased tumor size. Conclusion: Anti-ITGA3 antibody treatment reduced the tumor size. ITGA3 regulates stemness and invasion of glioblastoma through POU3F2.
-
-
-
Design of Multitarget Inhibitors as Tracheal Smooth Muscle Relaxants
Introduction: Asthma complications and adverse effects associated with steroidal therapy highlight the need for non-steroidal compounds intercepting asthmatic pathophysiology at multiple targets. The present investigation was carried out to evaluate the tracheal smooth muscle relaxant effect of virtually designed, combinatorially synthesized polyfunctional N-heteroarylamides. Methods: Virtual screening and molecular docking studies of designed compounds were performed using PyRx and AUTODOCK 4.2 software against molecular targets viz. FLAP, LTB4, and H1 receptor. Cross-validation of virtual screening results and active site, confirmation was performedusingVlife MDS software version 3.5. The combinatorial approach was used to synthesize designed compounds in which heterocyclic amines were reacted with substituted aromatic acid chlorides by nucleophilic substitution reaction to obtain a 5x5 mini-library. The structures of synthesized leads were confirmed by infrared and proton magnetic resonance spectroscopic analysis. Synthesized compounds were evaluated for their smooth muscle relaxation effect on isolated goat tracheal smooth muscle. Results: Results were calculated as a percent decrease in contraction response observed using histamine and LTB4. The tested compounds produced anticipated tracheal smooth muscle relaxant activity. Based on the results of screening the structure-activity relationships (SAR) have been reported. Conclusion: Present study concluded that synthesized polyfunctional N-heteroarylamides have a tracheal smooth muscle relaxant effect. The mode of action is predicted from the analysis of virtual screening results. A good correlation was observed between virtual screenings and biological activities of lead molecules suggesting the rationale used to optimize the structural requirements of a ligand for selected targets is appropriate.
-
-
-
Fructo-oligosaccharides Ameliorate Intestinal Mechanical Barrier Injury in Piglets Induced by Soybean Antigen in vitro and in vivo
Authors: Mengmeng Mi, Meinan Chang, Yihong Huang, Jinpeng Zhao, Li Pan, Nan Bao, Guixin Qin and Yuan ZhaoBackground: Fructose oligosaccharides (FOS) have been shown to reduce soybean antigeninduced hypersensitivity in piglets, but their effects on intestinal epithelial barrier function have not been characterized. Therefore, this study aimed to determine the effects of FOS on intestinal barrier injury induced by soybean antigen in piglets in vitro and in vivo. Methods: We studied the protective effects of FOS against mechanical barrier dysfunction induced using β-conglycinin or glycinin in porcine intestinal epithelial cells (IPEC-J2), and measured the serum concentrations of diamine oxidase (DAO), D-lactic acid, and endotoxin, and the expression of tight junction (TJ) proteins, in piglets. Results: We found that FOS concentration dependently increases cell activity, trans-epithelial electrical resistance, and TJ protein expression (P < 0.05) and reduces alkaline phosphatase (AP) activity (P < 0.05) in vitro. In addition, the serum DAO, D-lactic acid, and endotoxin concentrations were reduced by FOS administration in piglets (P < 0.05). Both in vitro and in vivo, the expression levels of TJ proteins (zona occludens 1 and occludin) were increased significantly by FOS (P < 0.05). Conclusion: Therefore, FOS protect against intestinal injury induced by soybean antigen in piglets, which may provide a basis for the prevention of allergy.
-
-
-
Evaluation of Serum Humanin and MOTS-c Peptide Levels in Patients with COVID-19 and Healthy Subjects
Background: Coronavirus Disease 2019 (COVID-19) is a life-threatening and persistent pandemic with high rates of mortality and morbidity. Although a dysfunction in the mitochondria occurs in COVID-19 pathogenesis, the contribution of mitochondrial-derived peptides to its pathophysiology has not yet been completely elucidated. The goals of this research were to assess the circulating humanin and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) levels in COVID-19 patients and explore the effects of antiviral drug therapy on these peptide levels. Methods: Thirty adult COVID-19 patients and 32 gender-matched healthy volunteers were enrolled in this study. Circulating humanin and MOTS-c levels were detected using the ELISA method during pretreatment (before drug therapy) and post-treatment (on the 7th day of drug therapy). Results: We found that there was significant attenuation of the serum humanin levels in COVID-19 patients (P < 0.001). However, we detected a significant augmentation in serum MOTS-c levels when compared to controls (P < 0.01 for pre-treatment and P < 0.001 for post-treatment). Interestingly, antiviral drug therapy did not modify the serum MOTS-c and humanin levels. Conclusion: Our findings suggest that MOTS-c and humanin were involved in the COVID-19 pathogenesis. Our data may also imply that elevated MOTS-c could act as a compensatory mechanism to eliminate the effects of decreased humanin levels.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
