Current Protein and Peptide Science - Volume 19, Issue 8, 2018
Volume 19, Issue 8, 2018
-
-
The Acidophilic Kinases PLK2 and PLK3: Structure, Substrate Targeting and Inhibition
Authors: Giorgio Cozza and Mauro SalviPLK2 and PLK3 are two closely related acidophilic kinases belonging to the Polo-like kinases (PLKs), a family of five members in mammals with a central role in cell cycle and related events. PLK1 is the most investigated enzyme from both physiological and pharmaceutical points of view, however, several specialized cellular functions of PLK2 and PLK3 have been recently discovered paving the way to deepened studies on their biological roles and their feasible selection as future therapeutic targets. Our review aims to provide a summarized view of the current knowledge regarding PLK2 and PLK3 kinases, including substrate specificity and signaling pathways directly affected by these kinases. Finally, an overview of PLK2 and PLK3 pharmacological regulation and perspectives in future achievements are proposed.
-
-
-
Viscosity Control of Protein Solution by Small Solutes: A Review
Authors: Taehun Hong, Kazuki Iwashita and Kentaro ShirakiViscosity of protein solution is one of the most troublesome issues for the high-concentration formulation of protein drugs. In this review, we summarize the practical methods that suppress the viscosity of protein solution using small molecular additives. The small amount of salts decreases the viscosity that results from electrostatic repulsion and attraction. The chaotrope suppresses the hydrophobic attraction and cluster formation, which can lower the solution viscosity. Arginine hydrochloride (ArgHCl) also suppresses the solution viscosity due to the hydrophobic and aromatic interactions between protein molecules. The small molecular additives are the simplest resolution of the high viscosity of protein solution as well as understanding of the primary cause in complex phenomena of protein interactions.
-
-
-
The Potential Use of Peptides in Cancer Treatment
Authors: Bahram Yavari, Reza Mahjub, Masoud Saidijam, Mozhgan Raigani and Meysam SoleimaniConventional chemotherapeutic drugs have significant limitations. For example, tumors may develop resistance, cancers may relapse after treatment, and the drugs may induce secondary malignancies in the treatment of metastatic cancer. There is still a great need for drugs that are able to destroy cancer cells selectively, that is, to effectively treat slow-growing and dormant cells without being affected by chemoresistance mechanisms. A growing number of studies indicate that peptides may be beneficial for drug discovery and development. Peptides offer minimal immunogenicity, excellent tissue penetrability, low-cost manufacturability, and ease of modification for enhancing in vivo stability and biological activity, properties which make them ideal candidates for cancer treatment. This review highlights recent advances in and future prospects for the application of peptides as therapeutic agents for cancer therapy. We discuss the application of peptides in cancer therapy, alone and in combination with other peptides or small-molecule chemotherapeutic drugs, for use in targeted cancer therapy. Furthermore, we consider the use of peptides as a carrier for targeted molecular imaging in the diagnosis and follow-up treatment of cancer. This account also reviews the challenges of using peptide drugs and ways to overcome these limitations. The results obtained in studies presented in this paper indicate that peptides are promising candidates for targeted cancer therapy.
-
-
-
Biosynthesis of Carnosine and Related Dipeptides in Vertebrates
Authors: Sebastian Kwiatkowski, Anna Kiersztan and Jakub DrozakCarnosine (β-alanyl-L-histidine) and its methylated derivatives: anserine (β-alanyl-Nπ- methyl-L-histidine) and balenine (β-alanyl-NΤ-methyl-L-histidine) are abundant constituents of excitable tissues of vertebrates. While carnosine and anserine are present at high concentrations and in variable proportions in skeletal muscle and brain of most vertebrates, balenine appears to be rather more abundant in marine mammals and certain reptilian species. Since the discovery of these compounds at the beginning of 20th century, numerous studies have been devoted to identification of the biochemical and physiological properties of carnosine and related dipeptides. These led to the discovery of the pHbuffering, metal-chelation and antioxidant, capabilities of carnosine and anserine, although no definitive ideas concerning their physiological role has yet been formulated. Only recently the molecular identities of the enzymes catalyzing synthesis of carnosine (carnosine synthase, EC 6.3.2.11) and anserine (carnosine N-methyltransferase, EC 2.1.1.22) have been elucidated, which has given a new insight into their metabolism in vertebrates. These findings have opened new research areas and provide authentic opportunities for understanding the biological function of these “enigmatic” dipeptides. This review aims to summarize recent advances in our knowledge concerning enzymes responsible for the biosynthesis of carnosine and related dipeptides and to evaluate their importance in vertebrate physiology.
-
-
-
Polymerase Delta in Eukaryotes: How is It Transiently Exchanged with Specialized DNA Polymerases During Translesion DNA Synthesis?
Authors: Fengyu Liu, Yulong Yang and Yajing ZhouPrecise duplication of the human genome is constantly threatened by a variety of genotoxic insults. During S-phase, those damaged template bases could be overcome by DNA damage tolerance (DDT) pathways that bypass such obstacles instead of repairing them, allowing replicative machinery to resume beyond the offending lesions. Two distinct strategies of DDT, template switching and translesion DNA synthesis (TLS), are employed in eukaryotes. In the former process, the newly synthesized sister chromatid is utilized as an undamaged template to restart recombination-dependent DNA synthesis in an error-free manner. While TLS process involves a reversible polymerase switching between replicative and specialized TLS polymerases for the rescue of stalled replication forks, but this process is intrinsically error-prone and thereby increases mutation rates that potentially drive cancer and aging. It still remains controversial on what exact molecular mechanism orchestrates the polymerase switching at blocked primer-template (P/T) junction. In this review, we summarize and discuss the details of multiple types of mechanisms on how DNA polymerase switching is coordinated during TLS in eukaryotic systems. We also propose a hypothesis regarding high-fidelity human DNA polymerase delta (pol δ) and its involvement in polymerase switching based on recent progress in its functional and structural characterization, especially post-translational modification of its subunits, to gain further insights into the intriguing mechanisms of its regulation during TLS.
-
-
-
Potential Influence of Cyclo(His-Pro) on Proteostasis: Impact on Neurodegenerative Diseases
Protein function is dependent on assumption of the correct three-dimensional structure, achieved through the folding process. As a central element in ensuring cellular homeostasis, proteostasis i.e. the control of correct protein folding, trafficking and degradation, is a highly regulated process ensured by three integrated molecular pathways: i) the unfolded protein response (UPR) which is activated by the engulfment of misfolded proteins and results in protein re-folding through the expression of chaperones; ii) the ubiquitin-proteasome system (UPS) which ‘flags’ misfolded proteins with ubiquitin, directing them to the 26S proteasome for proteolytic degradation; iii) autophagy that, through lysosomes, removes misfolded or aggregated proteins. All three of these proteostatic controls can be impaired by the aging process and by pathological mutations highlighting the potential role of proteostasis in conditions associated with aging such as neurodegeneration, type 2 diabetes and cancer. Indeed, neurodegenerative diseases are characterised by an interconnected triumvirate of deregulated proteostasis, neuroinflammation (i.e. the uncontrolled activation of microglial cells), and oxidative stress (i.e. the unbuffered increase in reactive oxygen species). The transcription factor Nrf2, classically associated with protection against oxidative stress, can also modulate the UPR, UPS and autophagy, while inhibiting the activation of NF-kB, the key transcription factor of the inflammatory response. In this review we focus on recent data from our laboratory and others demonstrating that the protective Nrf2 pathway can be activated by the endogenous cyclic dipeptide (His-Pro), thereby driving neuroprotective effects in different pathological settings. In this context we discuss the possible utility of clyclo (His-Pro) as a promising future therapeutic option for protein misfolding disorders.
-
-
-
The Plasma Membrane Calcium ATPases in Calcium Signaling Network
Authors: Xiaomo Wu, Liqiang Weng, Jinyan Zhang, Xiaolong Liu and Jianqing HuangThe plasma membrane Ca2+ ATPases (PMCAs) are responsible for the clearance of Ca2+ out of cells after intracellular Ca2+ transients. Cooperating with Na+/Ca2+ exchangers (NCXs) and Ca2+ buffering proteins, PMCAs play an essential role in maintaining the long-term cellular Ca2+ homeostasis. The plasma membrane Ca2+ ATPase was first discovered in red blood cell membrane about 50 years ago, and then other PMCA isoforms and alternatively spliced variants had been identified from different tissues and different developmental stages, revealing a surprising complexity of the PMCA family. In mammals, there are four PMCA isoforms encoded by four distinct genes. Isoform 1 and 4 are found in virtually all tissues, whereas isoform 2 and 3 are primarily expressed in excitable cells such as neurons and myocytes. Perturbation of PMCAs function has been implicated in a variety of diseases and disorders, including hearing loss, ataxia, paraplegia, and infertility. Here, we would like to review the recent progresses in the study of the PMCAs and related disorders, in particular how these pathological conditions help us to gain an in-depth insight into the function of PMCAs and their contribution in the regulation of Ca2+ signaling network.
-
-
-
An Atlas of Anionic Antimicrobial Peptides from Amphibians
Authors: Sarah R. Dennison, Frederick Harris, Manuela Mura and David A. PhoenixAnionic antimicrobial peptides (AAMPs) with net charges ranging from -1 to -8 have been identified in frogs, toads, newts and salamanders across Africa, South America and China. Most of these peptides show antibacterial activity and a number of them are multifunctional, variously showing antifungal activity, anticancer action, neuropeptide function and the ability to potentiate conventional antibiotics. Antimicrobial mechanisms proposed for these AAMPs, include toroidal pore formation and the Shai-Huang-Matsazuki model of membrane interaction along with pH dependent amyloidogenesis and membranolysis via tilted peptide formation. The potential for therapeutic and biotechnical application of these AAMPs has been demonstrated, including the development of amyloid-based nanomaterials and antiviral agents. It is concluded that amphibian AAMPs represent an untapped potential source of biologically active agents and merit far greater research interest.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
