Skip to content
2000
image of MmpS5-MmpL5 Transporters Deliver M. tuberculosis Resistance to Bedaquiline (BDQ) and Delamanid (DLM)

Abstract

Introduction

One of the earliest illnesses that has been identified is tuberculosis (TB). The largest challenge in managing tuberculosis today is the growing number of individuals infected with TB bacilli, particularly those that are Extensively drug resistant-tuberculosis (XDR-TB) and Multidrug-resistant tuberculosis (MDR-TB). However, by figuring out the resistance's molecular mechanism, Advanced molecular methods may be used to rapidly determine therapy plans. Combining Delamanid (DLM) with Bedaquiline (BDQ), one of the recently authorized medications, indicates that the therapy is effective.

Methods

We aim to investigate efflux-mediated resistance mechanisms in by using quantitative real-time PCR to assess the expression level of and .

Results

The median (M) and interquartile range (Iqr) of and expression varied from 5.65 to 9.01 and 7.95 to 10.74, respectively, when resistant strains were compared with sensitive ones. M and Iqr of and expression, however, ranged from 0.08–3.04 and 0.05–1.61 for sensitive strains, correspondingly.

Discussion

Our findings have implications for the development of fast genotypic drug susceptibility testing (DST). Quantitative real-time PCR to measure the expression level of mmpS5 and mmpL5 of baseline and post-baseline isolates is important to track the development of BDQ and DLM resistance.

Conclusion

Thus, when developing anti-tuberculosis drugs, mycobacterial MmpS5-MmpL5 transporters should be taken into consideration early on, as they are an MDR-efflux system.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037383330250807101618
2025-09-09
2025-11-17
Loading full text...

Full text loading...

References

  1. Organization W.H. Global tuberculosis report 2024. World Health Organization 2024
    [Google Scholar]
  2. Gandhi N.R. Nunn P. Dheda K. Schaaf H.S. Zignol M. van Soolingen D. Jensen P. Bayona J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet 2010 375 9728 1830 1843 10.1016/S0140‑6736(10)60410‑2 20488523
    [Google Scholar]
  3. Caminero J.A. Sotgiu G. Zumla A. Migliori G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis. 2010 10 9 621 629 10.1016/S1473‑3099(10)70139‑0 20797644
    [Google Scholar]
  4. Klopper M. Warren R.M. Hayes C. Gey van Pittius N.C. Streicher E.M. Müller B. Sirgel F.A. Chabula-Nxiweni M. Hoosain E. Coetzee G. David van Helden P. Victor T.C. Trollip A.P. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg. Infect. Dis. 2013 19 3 449 455 10.3201//EID1903.120246 23622714
    [Google Scholar]
  5. Velayati A.A. Farnia P. Farahbod A.M. Overview of drug-resistant tuberculosis worldwide. Int. J. Mycobacteriol. 2016 5 S161 10.1016/j.ijmyco.2016.09.066 28043527
    [Google Scholar]
  6. AlMatar M. Makky E.A. AlMandeal H. Eker E. Kayar B. Var I. Köksal F. Does the development of vaccines advance solutions for tuberculosis? Curr. Mol. Pharmacol. 2019 12 2 83 104 10.2174/1874467212666181126151948 30474542
    [Google Scholar]
  7. Tiberi S. Muñoz-Torrico M. Duarte R. Dalcolmo M. D’Ambrosio L. Migliori G.B. New drugs and perspectives for new anti-tuberculosis regimens ☆. Pulmonology 2018 24 2 86 98 10.1016/j.rppnen.2017.10.009 29487031
    [Google Scholar]
  8. Maslov D.A. Korotina A.V. Shur K.V. Vatlin A.A. Bekker O.B. Tolshchina S.G. Ishmetova R.I. Ignatenko N.K. Rusinov G.L. Charushin V.N. Danilenko V.N. Synthesis and antimycobacterial activity of imidazo[1,2-b][1,2,4,5]tetrazines. Eur. J. Med. Chem. 2019 178 39 47 10.1016/j.ejmech.2019.05.081 31176094
    [Google Scholar]
  9. Bekker O. Danilenko V. Ishmetova R. Maslov D. Rusinov G. Tolshchina S. Charushin V. Substituted azolo [1, 2, 4, 5] tetrazines- inhibitors of antibacterial serine-threonine protein kinases. RU Patent 2462466 2012
  10. Danilenko V.N. Osolodkin D.I. Lakatosh S.A. Preobrazhenskaya M.N. Shtil A.A. Bacterial eukaryotic type serine-threonine protein kinases: From structural biology to targeted anti-infective drug design. Curr. Top. Med. Chem. 2011 11 11 1352 1369 10.2174/156802611795589566 21513496
    [Google Scholar]
  11. Maslov D.A. Bekker O.B. Shur K.V. Vatlin A.A. Korotina A.V. Danilenko V.N. Whole-genome sequencing and comparative genomic analysis of Mycobacterium smegmatis mutants resistant to imidazo[1,2-b][1,2,4,5]tetrazines, antituberculosis drug candidates. Bulletin Russian State Medical Univ 2018 3 19 22 10.24075/brsmu.2018.039
    [Google Scholar]
  12. Vatlin A.A. Shur K.V. Danilenko V.N. Maslov D.A. Draft genome sequences of 12 Mycolicibacterium smegmatis strains resistant to imidazo [1, 2-b][1, 2, 4, 5] Tetrazines. Microbiol. Resour. Announc 2019 8 16 e00263 e19 10.1128/MRA.00263‑19 31000553
    [Google Scholar]
  13. Parish T. Stoker N.G. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology (Reading) 2000 146 8 1969 1975 10.1099/00221287‑146‑8‑1969 10931901
    [Google Scholar]
  14. Maslov D.A. Bekker O.B. Alekseeva A.G. Kniazeva L.M. Mavletova D.A. Afanasyev I.I. Vasilevich N.I. Danilenko V.N. Aminopyridine- and aminopyrimidine-based serine/threonine protein kinase inhibitors are drug candidates for treating drug-resistant tuberculosis. Bulletin Russian State Medical Univ 2017 1 38 43 10.24075/brsmu.2017‑01‑04
    [Google Scholar]
  15. Bekker O. Danilenko V. Maslov D. Test system of Mycobacterium smegmatis aphVIII+ for screening of inhibitors of serinethreonine protein kinases of eukaryotic type. RU Patent 2566998 2015
  16. Schön T. Werngren J. Machado D. Borroni E. Wijkander M. Lina G. Mouton J. Matuschek E. Kahlmeter G. Giske C. Multicentre testing of the EUCAST broth microdilution reference method for MIC determination on Mycobacterium tuberculosis. Clin. Microbiol. Infect. 2021 27 2 288.e1 288.e4 10.1016/j.cmi.2020.04.016 32360442
    [Google Scholar]
  17. AlMatar M. Var I. Kayar B. Köksal F. Differential expression of resistant and efflux pump genes in MDR-TB isolates. Endocr. Metab. Immune Disord. Drug Targets 2020 20 2 271 287 10.2174/1871530319666191018143907 31642789
    [Google Scholar]
  18. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  19. Mansjö M. Espinosa-Gongora C. Samanci I. Groenheit R. Werngren J. Performance of a broth microdilution assay for routine minimum inhibitory concentration determination of 14 anti-tuberculous drugs against the Mycobacterium tuberculosis complex based on the EUCAST reference protocol. Antimicrob. Agents Chemother. 2024 69 2 e00946 39692505
    [Google Scholar]
  20. Domenech P. Reed M.B. Barry C.E. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun. 2005 73 6 3492 3501 10.1128/IAI.73.6.3492‑3501.2005 15908378
    [Google Scholar]
  21. Andries K. Villellas C. Coeck N. Thys K. Gevers T. Vranckx L. Lounis N. de Jong B.C. Koul A. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 2014 9 7 e102135 10.1371/journal.pone.0102135 25010492
    [Google Scholar]
  22. da Silva P.E.A. Von Groll A. Martin A. Palomino J.C. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis: Table 1. FEMS Immunol. Med. Microbiol. 2011 63 1 1 9 10.1111/j.1574‑695X.2011.00831.x 21668514
    [Google Scholar]
  23. Islam M.M. Alam M.S. Liu Z. Khatun M.S. Yusuf B. Hameed H.M.A. Tian X. Chhotaray C. Basnet R. Abraha H. Zhang X. Khan S.A. Fang C. Li C. Hasan S. Tan S. Zhong N. Hu J. Zhang T. Molecular mechanisms of resistance and treatment efficacy of clofazimine and bedaquiline against Mycobacterium tuberculosis. Front. Med. (Lausanne) 2024 10 1304857 10.3389/fmed.2023.1304857 38274444
    [Google Scholar]
  24. Milano A. Pasca M.R. Provvedi R. Lucarelli A.P. Manina G. Ribeiro L.J.P. Manganelli, Riccardi, G. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5–MmpL5 efflux system. Tuberculosis (Edinb.) 2009 89 1 84 90 10.1016/j.tube.2008.08.003 18851927
    [Google Scholar]
  25. Ioerger T.R. O’Malley T. Liao R. Guinn K.M. Hickey M.J. Mohaideen N. Murphy K.C. Boshoff H.I.M. Mizrahi V. Rubin E.J. Sassetti C.M. Barry C.E. Sherman D.R. Parish T. Sacchettini J.C. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 2013 8 9 e75245 10.1371/journal.pone.0075245 24086479
    [Google Scholar]
  26. Balgouthi K. AlMatar M. Saghrouchni H. Albarri O. Var I. Mutations in Rv0678, Rv2535c, and Rv1979c confer resistance to bedaquiline in clinical isolates of Mycobacterium Tuberculosis. Curr. Mol. Pharmacol. 2024 17 e18761429314641 10.2174/0118761429314641240815080447 39317997
    [Google Scholar]
  27. Maslov D.A. Shur K.V. Vatlin A.A. Danilenko V.N. MmpS5-MmpL5 transporters provide Mycobacterium smegmatis resistance to imidazo[1,2-b][1,2,4,5]tetrazines. Pathogens 2020 9 3 166 10.3390/pathogens9030166 32121069
    [Google Scholar]
  28. Sandhu P. Akhter Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J. Inorg. Biochem. 2017 170 75 84 10.1016/j.jinorgbio.2017.02.013 28231453
    [Google Scholar]
  29. Richard M. Gutiérrez A.V. Viljoen A.J. Ghigo E. Blaise M. Kremer L. Mechanistic and structural insights into the unique TetR-dependent regulation of a drug efflux pump in Mycobacterium abscessus. Front. Microbiol. 2018 9 649 10.3389/fmicb.2018.00649 29675007
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037383330250807101618
Loading
/content/journals/cpps/10.2174/0113892037383330250807101618
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: drug resistance ; M. Tuberculosis ; MmpS5-MmpL5 ; DLM ; BDQ ; efflux
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test