Skip to content
2000
image of Clustering-based Method for Constructing the Phase Diagram of the van der Waals Model Fluid

Abstract

Introduction

Membraneless organelles, such as nucleoli, stress granules, and P-bodies, are not enclosed by lipid membranes; rather, they are formed through a process known as liquid-liquid phase separation. To fully understand the biophysics behind the formation and regulation of these organelles, knowledge that has significant implications for cellular biology and disease research, the creation of phase diagrams is essential. Phase diagrams help clarify the physical and chemical conditions under which these organelles form, exist, and function within cells. However, methods for creating phase diagrams are often limited when the equation of state is unknown, a challenge that becomes more pronounced with increasing system complexity. While several methods exist to address this issue, their application is not universal.

Methods

We present a new method based on the SPACEBALL algorithm and cluster size monitoring, which enables the determination of binodal and spinodal line positions by analyzing system clustering during molecular dynamics simulations of a well-studied van der Waals fluid under various conditions.

Results

Based on an analysis of the system’s clustering behavior, we constructed the phase diagram for the monoatomic van der Waals fluid simulated at various densities and temperatures, observing that uniformly distributed van der Waals beads aggregate, causing changes in the system’s density.

Discussion

Using the generated data, we discuss how a fitting function can be used to determine the binodal line location, and how observations of the system’s density fluctuations can be used to determine the spinodal line location and assess the critical temperature.

Conclusion

We have presented alternative methods for locating phase boundaries in protein solutions, where the absence of a validated equation of state necessitates innovative approaches and makes traditional methods challenging to apply. Our SPACEBALL-based approach enables the creation of phase diagrams using pure trajectories obtained from molecular dynamics simulations.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037360348250528003832
2025-06-16
2025-09-02
Loading full text...

Full text loading...

References

  1. Arter W.E. Qi R. Erkamp N.A. Krainer G. Didi K. Welsh T.J. Acker J. Nixon-Abell J. Qamar S. Guillén-Boixet J. Franzmann T.M. Kuster D. Hyman A.A. Borodavka A. George-Hyslop P.S. Alberti S. Knowles T.P.J. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 2022 13 1 7845 10.1038/s41467‑022‑35265‑7 36543777
    [Google Scholar]
  2. Atkins P. de Paula J. Atkins’ Physical Chemistry. 11th ed Oxford University Press 2018
    [Google Scholar]
  3. Prausnitz J.M. Tavares F.W. Thermodynamics of fluid‐phase equilibria for standard chemical engineering operations. AIChE J. 2004 50 4 739 761 10.1002/aic.10069
    [Google Scholar]
  4. Debenedetti P.G. Metastable Liquids: Concepts and Principles. Princeton University Press 2020 10.2307/j.ctv10crfs5
    [Google Scholar]
  5. Frenkel D. Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Elsevier 2023
    [Google Scholar]
  6. Brangwynne C.P. Mitchison T.J. Hyman A.A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 2011 108 11 4334 4339 10.1073/pnas.1017150108 21368180
    [Google Scholar]
  7. Brangwynne C.P. Eckmann C.R. Courson D.S. Rybarska A. Hoege C. Gharakhani J. Jülicher F. Hyman A.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 2009 324 5935 1729 1732 10.1126/science.1172046 19460965
    [Google Scholar]
  8. Elbaum-Garfinkle S. Matter over mind: Liquid phase separation and neurodegeneration. J. Biol. Chem. 2019 294 18 7160 7168 10.1074/jbc.REV118.001188 30914480
    [Google Scholar]
  9. Veesler S. Lafferrere L. Garcia E. Hoff C. Phase diagrams for protein crystallization. Eng. Process. Devel 2006 45 1 8 13
    [Google Scholar]
  10. Alberti S. Dormann D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 2019 53 1 171 194 10.1146/annurev‑genet‑112618‑043527 31430179
    [Google Scholar]
  11. Stroberg W. Schnell S. On the origin of non-membrane-bound organelles, and their physiological function. J. Theor. Biol. 2017 434 42 49 10.1016/j.jtbi.2017.04.006 28392184
    [Google Scholar]
  12. Cho E. Lu Y. Compartmentalizing cell-free systems: Toward creating life-like artificial cells and beyond. ACS Synth. Biol. 2020 9 11 2881 2901 10.1021/acssynbio.0c00433 33095011
    [Google Scholar]
  13. Boeynaems S. Alberti S. Fawzi N.L. Mittag T. Polymenidou M. Rousseau F. Schymkowitz J. Shorter J. Wolozin B. Van Den Bosch L. Tompa P. Fuxreiter M. Protein phase separation: A new phase in cell biology. Trends Cell Biol. 2018 28 6 420 435 10.1016/j.tcb.2018.02.004 29602697
    [Google Scholar]
  14. Li P. Banjade S. Cheng H.C. Kim S. Chen B. Guo L. Llaguno M. Hollingsworth J.V. King D.S. Banani S.F. Russo P.S. Jiang Q.X. Nixon B.T. Rosen M.K. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012 483 7389 336 340 10.1038/nature10879 22398450
    [Google Scholar]
  15. Martin E.W. Harmon T.S. Hopkins J.B. Chakravarthy S. Incicco J.J. Schuck P. Soranno A. Mittag T. A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat. Commun. 2021 12 1 4513 10.1038/s41467‑021‑24727‑z 34301955
    [Google Scholar]
  16. Ahmad A. Uversky V.N. Khan R.H. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. Int. J. Biol. Macromol. 2022 220 703 720 10.1016/j.ijbiomac.2022.08.132 35998851
    [Google Scholar]
  17. Mukherjee S. Poudyal M. Dave K. Kadu P. Maji S.K. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem. Soc. Rev. 2024 53 10 4976 5013 38597222
    [Google Scholar]
  18. Gui X. Feng S. Li Z. Li Y. Reif B. Shi B. Niu Z. Liquid-liquid phase separation of amyloid-β oligomers modulates amyloid fibrils formation. J. Biol. Chem. 2023 299 3 102926 36682493
    [Google Scholar]
  19. Sneiderienė G. González Díaz A. Adhikari S.D. Michaels T. The Alzheimer’s A peptide forms biomolecular condensates that trigger amyloid aggregation. bioRxiv 2024 Available from: https://www.biorxiv.org/content/10.1101/2024.01.14.575549v1
    [Google Scholar]
  20. Antifeeva I.A. Fonin A.V. Fefilova A.S. Stepanenko O.V. Povarova O.I. Silonov S.A. Kuznetsova I.M. Uversky V.N. Turoverov K.K. Liquid–liquid phase separation as an organizing principle of intracellular space: Overview of the evolution of the cell compartmentalization concept. Cell. Mol. Life Sci. 2022 79 5 251 10.1007/s00018‑022‑04276‑4 35445278
    [Google Scholar]
  21. Wang B. Zhang L. Dai T. Qin Z. Lu H. Zhang L. Zhou F. Liquid-liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 2021 6 1 290 34334791
    [Google Scholar]
  22. Wheeler R.J. Therapeutics-how to treat phase separation-associated diseases. Emerg. Top. Life Sci. 2020 4 3 307 318 32364240
    [Google Scholar]
  23. Liu Z. Qin Z. Liu Y. Xia X. He L. Chen N. Hu X. Peng X. Liquid‒liquid phase separation: roles and implications in future cancer treatment. Int. J. Biol. Sci. 2023 19 13 4139 4156 10.7150/ijbs.81521 37705755
    [Google Scholar]
  24. Alert R. Tierno P. Casademunt J. Formation of metastable phases by spinodal decomposition. Nat. Commun. 2016 7 1 13067 10.1038/ncomms13067 27713406
    [Google Scholar]
  25. Gebauer D. Kellermeier M. Gale J.D. Bergström L. Cölfen H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 2014 43 7 2348 2371 10.1039/C3CS60451A 24457316
    [Google Scholar]
  26. Cahn J.W. Spinodal decomposition. Trans. Metall. Soc. AIME 1968 242 166 180
    [Google Scholar]
  27. Hilliard J.E. Spinodal Decomposition. Phase Transformations. American Society of Metals 1970 497 560
    [Google Scholar]
  28. Cook H.E. A lattice model of structural and dislocation transformations. Acta Metall. 1973 21 10 1431 1444 10.1016/0001‑6160(73)90092‑8
    [Google Scholar]
  29. Binder K. Theory of first-order phase transitions. Rep. Prog. Phys. 1987 50 7 783 859 10.1088/0034‑4885/50/7/001
    [Google Scholar]
  30. Frenkel J. Kinetic Theory of Nucleation. Dover, New York Routledge 1955
    [Google Scholar]
  31. Feder J. Russell K.C. Lothe J. Pound G.M. Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 1966 15 57 111 178 10.1080/00018736600101264
    [Google Scholar]
  32. Abraham F.F. Homogeneous Nucleation Theory. New York Academic Press 1975
    [Google Scholar]
  33. Binder K. Stauffer D. Statistical theory of nucleation, condensation and coagulation. Adv. Phys. 1976 25 343 396
    [Google Scholar]
  34. Kalikmanov V.I. Nucleation Theory. Springer 2013 10.1007/978‑90‑481‑3643‑8
    [Google Scholar]
  35. Prestipino S. Laio A. Tosatti E. Shape and area fluctuation effects on nucleation theory. J. Chem. Phys. 2014 140 9 094501 10.1063/1.4866971 24606362
    [Google Scholar]
  36. James D. Beairsto S. Hartt C. Zavalov O. Saika-Voivod I. Bowles R.K. Poole P.H. Phase transitions in fluctuations and their role in two-step nucleation. J. Chem. Phys. 2019 150 7 074501 10.1063/1.5057429 30795655
    [Google Scholar]
  37. Sosso G.C. Chen J. Cox S.J. Fitzner M. Pedevilla P. Zen A. Michaelides A. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations. Chem. Rev. 2016 116 12 7078 7116 10.1021/acs.chemrev.5b00744 27228560
    [Google Scholar]
  38. Oxtoby D.W. Nucleation of first-order phase transitions. Acc. Chem. Res. 1998 31 2 91 97 10.1021/ar9702278
    [Google Scholar]
  39. Sear R.P. Nucleation: theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter 2007 19 3 033101 10.1088/0953‑8984/19/3/033101
    [Google Scholar]
  40. Kelton K. Greer A.L. Nucleation in Condensed Matter: Applications in Materials and Biology. Elsevier 2010
    [Google Scholar]
  41. Sethna J. Critical droplets and nucleation. Laboratory of Atomic and Solid State Physics, Cornell University 2015
    [Google Scholar]
  42. Shimobayashi S.F. Ronceray P. Sanders D.W. Haataja M.P. Brangwynne C.P. Nucleation landscape of biomolecular condensates. Nature 2021 599 7885 503 506 10.1038/s41586‑021‑03905‑5 34552246
    [Google Scholar]
  43. Bhamidi V. Kenis P.J.A. Zukoski C.F. Probability of nucleation in a metastable zone: Induction supersaturation and implications. Cryst. Growth Des. 2017 17 3 1132 1145 10.1021/acs.cgd.6b01529
    [Google Scholar]
  44. Schmelzer J.W.P. Abyzov A.S. Möller J. Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions. J. Chem. Phys. 2004 121 14 6900 6917 10.1063/1.1786914 15473749
    [Google Scholar]
  45. Balibar S. Caupin F. Metastable liquids. J. Phys. Condens. Matter 2003 15 1 S75 S82 10.1088/0953‑8984/15/1/308
    [Google Scholar]
  46. Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science 2017 357 6357 eaaf4382 10.1126/science.aaf4382 28935776
    [Google Scholar]
  47. Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017 18 5 285 298 10.1038/nrm.2017.7 28225081
    [Google Scholar]
  48. Huang J.S. Goldburg W.I. Bjerkaas A.W. Study of phase separation in a critical binary liquid mixture: Spinodal decomposition. Phys. Rev. Lett. 1974 32 17 921 923 10.1103/PhysRevLett.32.921
    [Google Scholar]
  49. Cahn J.W. Hilliard J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 1958 28 2 258 267 10.1063/1.1744102
    [Google Scholar]
  50. Cahn J.W. Hilliard J.E. Spinodal decomposition: A reprise. Acta Metall. 1971 19 2 151 161 10.1016/0001‑6160(71)90127‑1
    [Google Scholar]
  51. Langer J.S. Theory of spinodal decomposition in alloys. Ann. Phys. 1971 65 1 53 86 10.1016/0003‑4916(71)90162‑X
    [Google Scholar]
  52. Binder K. Billotet C. Mirold P. On the theory of spinodal decomposition in solid and liquid binary mixtures. Z. Phys. B Condens. Matter Quanta 1978 30 2 183 195 10.1007/BF01320985
    [Google Scholar]
  53. Alberti S. Gladfelter A. Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019 176 3 419 434 10.1016/j.cell.2018.12.035 30682370
    [Google Scholar]
  54. Brangwynne C.P. Tompa P. Pappu R.V. Polymer physics of intracellular phase transitions. Nat. Phys. 2015 11 11 899 904 10.1038/nphys3532
    [Google Scholar]
  55. Berry J. Brangwynne C.P. Haataja M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 2018 81 4 046601 10.1088/1361‑6633/aaa61e 29313527
    [Google Scholar]
  56. Zwicker D. Decker M. Jaensch S. Hyman A.A. Jülicher F. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl. Acad. Sci. USA 2014 111 26 E2636 E2645 10.1073/pnas.1404855111 24979791
    [Google Scholar]
  57. Favvas E.P. Mitropoulos A.C. What is spinodal decomposition? J. Eng. Sci. Technol Review 2008 1 1 25 27 10.25103/jestr.011.05
    [Google Scholar]
  58. Jones R.A. Soft Condensed Matter. Oxford University Press 2002 10.1093/oso/9780198505907.001.0001
    [Google Scholar]
  59. Nezbeda I. Melnyk R. Trokhymchuk A. A new concept for augmented van der Waals equations of state. J. Supercrit. Fluids 2010 55 2 448 454 10.1016/j.supflu.2010.10.041
    [Google Scholar]
  60. Rowlinson J.S. Widom B. Molecular Theory of Capillarity. Courier Corporation 2013
    [Google Scholar]
  61. Callen H.B. Thermodynamics and an Introduction to Thermostatistics 1991
    [Google Scholar]
  62. Widom B. Phase Equilibria and Critical Phenomena. Cambridge University Press 1967
    [Google Scholar]
  63. Hu T. Wang H. Gomez H. Direct van der Waals simulation (DVS) of phase-transforming fluids. Sci. Adv. 2023 9 11 eadg3007 10.1126/sciadv.adg3007 36930713
    [Google Scholar]
  64. Fogliatto E.O. Clausse A. Teruel F.E. Simulation of phase separation in a van der Waals fluid under gravitational force with Lattice Boltzmann method. Int. J. Numer. Methods Heat Fluid Flow 2019 29 9 3095 3109 10.1108/HFF‑11‑2018‑0682
    [Google Scholar]
  65. Ridl K.S. Wagner A.J. Lattice Boltzmann simulation of mixtures with multicomponent van der Waals equation of state. Phys. Rev. E 2018 98 4 043305 10.1103/PhysRevE.98.043305
    [Google Scholar]
  66. Philbin J.P. Haugland T.S. Ghosh T.K. Ronca E. Chen M. Narang P. Koch H. Molecular van der Waals fluids in cavity quantum electrodynamics. J. Phys. Chem. Lett. 2023 14 40 8988 8993 10.1021/acs.jpclett.3c01790 37774379
    [Google Scholar]
  67. Liu J. Thermal convection in the van der Waals fluid. Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty. Cham Birkhäuser 2018 377 398
    [Google Scholar]
  68. Busuioc S. Ambruş V.E. Biciuşcă T. Sofonea V. Two-dimensional off-lattice Boltzmann model for van der Waals fluids with variable temperature. Comput. Math. Appl. 2020 79 1 111 140 10.1016/j.camwa.2018.12.015
    [Google Scholar]
  69. Pham D.Q.H. Chwastyk M. Cieplak M. The coexistence region in the Van der Waals fluid and the liquid-liquid phase transitions. Front Chem. 2023 10 1106599 10.3389/fchem.2022.1106599 36760519
    [Google Scholar]
  70. Hermann J. DiStasio R.A. Tkatchenko A. First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications. Chem. Rev. 2017 117 6 4714 4758 10.1021/acs.chemrev.6b00446 28272886
    [Google Scholar]
  71. Thompson A.P. Aktulga H.M. Berger R. Bolintineanu D.S. Brown W.M. Crozier P.S. LAMMPS: A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022 271 108171 10.1016/j.cpc.2021.108171
    [Google Scholar]
  72. Zhao Y. Chwastyk M. Cieplak M. Structural entanglements in protein complexes. J. Chem. Phys. 2017 146 22 225102 10.1063/1.4985221 29166058
    [Google Scholar]
  73. Zhao Y. Chwastyk M. Cieplak M. Topological transformations in proteins: effects of heating and proximity of an interface. Sci. Rep. 2017 7 1 39851 10.1038/srep39851 28051124
    [Google Scholar]
  74. Hensen J.P. McDonald I.R. Theory of Simple Liquids. New York Academic Press 1973
    [Google Scholar]
  75. Chwastyk M. Galera-Prat A. Sikora M. Gómez-Sicilia À. Carrión-Vázquez M. Cieplak M. Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins 2014 82 5 717 726 10.1002/prot.24436 24123195
    [Google Scholar]
  76. Gunnoo M. Cazade P.A. Orlowski A. Chwastyk M. Liu H. Ta D.T. Cieplak M. Nash M. Thompson D. Steered molecular dynamics simulations reveal the role of Ca 2+ in regulating mechanostability of cellulose-binding proteins. Phys. Chem. Chem. Phys. 2018 20 35 22674 22680 10.1039/C8CP00925B 30132772
    [Google Scholar]
  77. Chwastyk M. Cieplak M. Conformational biases of α-synuclein and formation of transient knots. J. Phys. Chem. B 2020 124 1 11 19 10.1021/acs.jpcb.9b08481 31805238
    [Google Scholar]
  78. Chwastyk M. Panek E.A. Malinowski J. Jaskólski M. Cieplak M. Properties of cavities in biological structures: A survey of the Protein Data Bank. Front. Mol. Biosci. 2020 7 591381 10.3389/fmolb.2020.591381 33240933
    [Google Scholar]
  79. Chwastyk M. Jaskólski M. Cieplak M. Structure‐based analysis of thermodynamic and mechanical properties of cavity‐containing proteins – case study of plant pathogenesis‐related proteins of class 10. FEBS J. 2014 281 1 416 429 10.1111/febs.12611 24206126
    [Google Scholar]
  80. Chwastyk M. Jaskólski M. Cieplak M. The volume of cavities in proteins and virus capsids. Proteins 2016 84 9 1275 1286 10.1002/prot.25076 27231838
    [Google Scholar]
  81. Chwastyk M. Cieplak M. Nascent folding of proteins across the three domains of life. Front. Mol. Biosci. 2021 8 692230 692230 10.3389/fmolb.2021.692230 34164435
    [Google Scholar]
  82. Stephan S. Thol M. Vrabec J. Hasse H. Thermophysical properties of the Lennard-Jones fluid: Database and data assessment. J. Chem. Inf. Model. 2019 59 10 4248 4265 10.1021/acs.jcim.9b00620 31609113
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037360348250528003832
Loading
/content/journals/cpps/10.2174/0113892037360348250528003832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test