Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Introduction

Membraneless organelles, such as nucleoli, stress granules, and P-bodies, are not enclosed by lipid membranes; rather, they are formed through a process known as liquid-liquid phase separation. To fully understand the biophysics behind the formation and regulation of these organelles, knowledge that has significant implications for cellular biology and disease research, the creation of phase diagrams is essential. Phase diagrams help clarify the physical and chemical conditions under which these organelles form, exist, and function within cells. However, methods for creating phase diagrams are often limited when the equation of state is unknown, a challenge that becomes more pronounced with increasing system complexity. While several methods exist to address this issue, their application is not universal.

Methods

We present a new method based on the SPACEBALL algorithm and cluster size monitoring, which enables the determination of binodal and spinodal line positions by analyzing system clustering during molecular dynamics simulations of a well-studied van der Waals fluid under various conditions.

Results

Based on an analysis of the system’s clustering behavior, we constructed the phase diagram for the monoatomic van der Waals fluid simulated at various densities and temperatures, observing that uniformly distributed van der Waals beads aggregate, causing changes in the system’s density.

Discussion

Using the generated data, we discuss how a fitting function can be used to determine the binodal line location, and how observations of the system’s density fluctuations can be used to determine the spinodal line location and assess the critical temperature.

Conclusion

We have presented alternative methods for locating phase boundaries in protein solutions, where the absence of a validated equation of state necessitates innovative approaches and makes traditional methods challenging to apply. Our SPACEBALL-based approach enables the creation of phase diagrams using pure trajectories obtained from molecular dynamics simulations.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037360348250528003832
2025-06-16
2025-11-17
Loading full text...

Full text loading...

References

  1. ArterW.E. QiR. ErkampN.A. KrainerG. DidiK. WelshT.J. AckerJ. Nixon-AbellJ. QamarS. Guillén-BoixetJ. FranzmannT.M. KusterD. HymanA.A. BorodavkaA. George-HyslopP.S. AlbertiS. KnowlesT.P.J. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform.Nat. Commun.2022131784510.1038/s41467‑022‑35265‑7 36543777
    [Google Scholar]
  2. AtkinsP. de PaulaJ. Atkins’ Physical Chemistry.11th edOxford University Press2018
    [Google Scholar]
  3. PrausnitzJ.M. TavaresF.W. Thermodynamics of fluid‐phase equilibria for standard chemical engineering operations.AIChE J.200450473976110.1002/aic.10069
    [Google Scholar]
  4. DebenedettiP.G. Metastable Liquids: Concepts and Principles.Princeton University Press202010.2307/j.ctv10crfs5
    [Google Scholar]
  5. FrenkelD. SmitB. Understanding Molecular Simulation: From Algorithms to Applications.Elsevier2023
    [Google Scholar]
  6. BrangwynneC.P. MitchisonT.J. HymanA.A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.Proc. Natl. Acad. Sci. USA2011108114334433910.1073/pnas.1017150108 21368180
    [Google Scholar]
  7. BrangwynneC.P. EckmannC.R. CoursonD.S. RybarskaA. HoegeC. GharakhaniJ. JülicherF. HymanA.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation.Science200932459351729173210.1126/science.1172046 19460965
    [Google Scholar]
  8. Elbaum-GarfinkleS. Matter over mind: Liquid phase separation and neurodegeneration.J. Biol. Chem.2019294187160716810.1074/jbc.REV118.001188 30914480
    [Google Scholar]
  9. VeeslerS. LafferrereL. GarciaE. HoffC. Phase diagrams for protein crystallization.Eng. Process. Devel2006451813
    [Google Scholar]
  10. AlbertiS. DormannD. Liquid–liquid phase separation in disease.Annu. Rev. Genet.201953117119410.1146/annurev‑genet‑112618‑043527 31430179
    [Google Scholar]
  11. StrobergW. SchnellS. On the origin of non-membrane-bound organelles, and their physiological function.J. Theor. Biol.2017434424910.1016/j.jtbi.2017.04.006 28392184
    [Google Scholar]
  12. ChoE. LuY. Compartmentalizing cell-free systems: Toward creating life-like artificial cells and beyond.ACS Synth. Biol.20209112881290110.1021/acssynbio.0c00433 33095011
    [Google Scholar]
  13. BoeynaemsS. AlbertiS. FawziN.L. MittagT. PolymenidouM. RousseauF. SchymkowitzJ. ShorterJ. WolozinB. Van Den BoschL. TompaP. FuxreiterM. Protein phase separation: A new phase in cell biology.Trends Cell Biol.201828642043510.1016/j.tcb.2018.02.004 29602697
    [Google Scholar]
  14. LiP. BanjadeS. ChengH.C. KimS. ChenB. GuoL. LlagunoM. HollingsworthJ.V. KingD.S. BananiS.F. RussoP.S. JiangQ.X. NixonB.T. RosenM.K. Phase transitions in the assembly of multivalent signalling proteins.Nature2012483738933634010.1038/nature10879 22398450
    [Google Scholar]
  15. MartinE.W. HarmonT.S. HopkinsJ.B. ChakravarthyS. InciccoJ.J. SchuckP. SorannoA. MittagT. A multi-step nucleation process determines the kinetics of prion-like domain phase separation.Nat. Commun.2021121451310.1038/s41467‑021‑24727‑z 34301955
    [Google Scholar]
  16. AhmadA. UverskyV.N. KhanR.H. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases.Int. J. Biol. Macromol.202222070372010.1016/j.ijbiomac.2022.08.132 35998851
    [Google Scholar]
  17. MukherjeeS. PoudyalM. DaveK. KaduP. MajiS.K. Protein misfolding and amyloid nucleation through liquid-liquid phase separation.Chem. Soc. Rev.2024531049765013 38597222
    [Google Scholar]
  18. GuiX. FengS. LiZ. LiY. ReifB. ShiB. NiuZ. Liquid-liquid phase separation of amyloid-β oligomers modulates amyloid fibrils formation.J. Biol. Chem.20232993102926 36682493
    [Google Scholar]
  19. SneiderienėG. González DíazA. AdhikariS.D. MichaelsT. The Alzheimer’s A peptide forms biomolecular condensates that trigger amyloid aggregation.bioRxiv2024Available from: https://www.biorxiv.org/content/10.1101/2024.01.14.575549v1
    [Google Scholar]
  20. AntifeevaI.A. FoninA.V. FefilovaA.S. StepanenkoO.V. PovarovaO.I. SilonovS.A. KuznetsovaI.M. UverskyV.N. TuroverovK.K. Liquid–liquid phase separation as an organizing principle of intracellular space: Overview of the evolution of the cell compartmentalization concept.Cell. Mol. Life Sci.202279525110.1007/s00018‑022‑04276‑4 35445278
    [Google Scholar]
  21. WangB. ZhangL. DaiT. QinZ. LuH. ZhangL. ZhouF. Liquid-liquid phase separation in human health and diseases.Signal Transduct. Target. Ther.202161290 34334791
    [Google Scholar]
  22. WheelerR.J. Therapeutics-how to treat phase separation-associated diseases.Emerg. Top. Life Sci.202043307318 32364240
    [Google Scholar]
  23. LiuZ. QinZ. LiuY. XiaX. HeL. ChenN. HuX. PengX. Liquid‒liquid phase separation: roles and implications in future cancer treatment.Int. J. Biol. Sci.202319134139415610.7150/ijbs.81521 37705755
    [Google Scholar]
  24. AlertR. TiernoP. CasademuntJ. Formation of metastable phases by spinodal decomposition.Nat. Commun.2016711306710.1038/ncomms13067 27713406
    [Google Scholar]
  25. GebauerD. KellermeierM. GaleJ.D. BergströmL. CölfenH. Pre-nucleation clusters as solute precursors in crystallisation.Chem. Soc. Rev.20144372348237110.1039/C3CS60451A 24457316
    [Google Scholar]
  26. CahnJ.W. Spinodal decomposition.Trans. Metall. Soc. AIME1968242166180
    [Google Scholar]
  27. HilliardJ.E. Spinodal decomposition.In: Phase Transformations.American Society of Metals1970497560
    [Google Scholar]
  28. CookH.E. A lattice model of structural and dislocation transformations.Acta Metall.197321101431144410.1016/0001‑6160(73)90092‑8
    [Google Scholar]
  29. BinderK. Theory of first-order phase transitions.Rep. Prog. Phys.198750778385910.1088/0034‑4885/50/7/001
    [Google Scholar]
  30. FrenkelJ. Kinetic Theory of Nucleation.Dover, New YorkRoutledge1955
    [Google Scholar]
  31. FederJ. RussellK.C. LotheJ. PoundG.M. Homogeneous nucleation and growth of droplets in vapours.Adv. Phys.1966155711117810.1080/00018736600101264
    [Google Scholar]
  32. AbrahamF.F. Homogeneous Nucleation Theory.New YorkAcademic Press1975
    [Google Scholar]
  33. BinderK. StaufferD. Statistical theory of nucleation, condensation and coagulation.Adv. Phys.197625343396
    [Google Scholar]
  34. KalikmanovV.I. Nucleation Theory.Springer201310.1007/978‑90‑481‑3643‑8
    [Google Scholar]
  35. PrestipinoS. LaioA. TosattiE. Shape and area fluctuation effects on nucleation theory.J. Chem. Phys.2014140909450110.1063/1.4866971 24606362
    [Google Scholar]
  36. JamesD. BeairstoS. HarttC. ZavalovO. Saika-VoivodI. BowlesR.K. PooleP.H. Phase transitions in fluctuations and their role in two-step nucleation.J. Chem. Phys.2019150707450110.1063/1.5057429 30795655
    [Google Scholar]
  37. SossoG.C. ChenJ. CoxS.J. FitznerM. PedevillaP. ZenA. MichaelidesA. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations.Chem. Rev.2016116127078711610.1021/acs.chemrev.5b00744 27228560
    [Google Scholar]
  38. OxtobyD.W. Nucleation of first-order phase transitions.Acc. Chem. Res.1998312919710.1021/ar9702278
    [Google Scholar]
  39. SearR.P. Nucleation: theory and applications to protein solutions and colloidal suspensions.J. Phys. Condens. Matter200719303310110.1088/0953‑8984/19/3/033101
    [Google Scholar]
  40. KeltonK. GreerA.L. Nucleation in Condensed Matter: Applications in Materials and Biology.Elsevier2010
    [Google Scholar]
  41. SethnaJ. Critical droplets and nucleation.Laboratory of Atomic and Solid State Physics, Cornell University2015
    [Google Scholar]
  42. ShimobayashiS.F. RoncerayP. SandersD.W. HaatajaM.P. BrangwynneC.P. Nucleation landscape of biomolecular condensates.Nature2021599788550350610.1038/s41586‑021‑03905‑5 34552246
    [Google Scholar]
  43. BhamidiV. KenisP.J.A. ZukoskiC.F. Probability of nucleation in a metastable zone: Induction supersaturation and implications.Cryst. Growth Des.20171731132114510.1021/acs.cgd.6b01529
    [Google Scholar]
  44. SchmelzerJ.W.P. AbyzovA.S. MöllerJ. Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions.J. Chem. Phys.2004121146900691710.1063/1.1786914 15473749
    [Google Scholar]
  45. BalibarS. CaupinF. Metastable liquids.J. Phys. Condens. Matter2003151S75S8210.1088/0953‑8984/15/1/308
    [Google Scholar]
  46. ShinY. BrangwynneC.P. Liquid phase condensation in cell physiology and disease.Science20173576357eaaf438210.1126/science.aaf4382 28935776
    [Google Scholar]
  47. BananiS.F. LeeH.O. HymanA.A. RosenM.K. Biomolecular condensates: Organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol.201718528529810.1038/nrm.2017.7 28225081
    [Google Scholar]
  48. HuangJ.S. GoldburgW.I. BjerkaasA.W. Study of phase separation in a critical binary liquid mixture: Spinodal decomposition.Phys. Rev. Lett.1974321792192310.1103/PhysRevLett.32.921
    [Google Scholar]
  49. CahnJ.W. HilliardJ.E. Free energy of a nonuniform system. I. Interfacial free energy.J. Chem. Phys.195828225826710.1063/1.1744102
    [Google Scholar]
  50. CahnJ.W. HilliardJ.E. Spinodal decomposition: A reprise.Acta Metall.197119215116110.1016/0001‑6160(71)90127‑1
    [Google Scholar]
  51. LangerJ.S. Theory of spinodal decomposition in alloys.Ann. Phys.1971651538610.1016/0003‑4916(71)90162‑X
    [Google Scholar]
  52. BinderK. BillotetC. MiroldP. On the theory of spinodal decomposition in solid and liquid binary mixtures.Z. Phys. B Condens. Matter Quanta197830218319510.1007/BF01320985
    [Google Scholar]
  53. AlbertiS. GladfelterA. MittagT. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates.Cell2019176341943410.1016/j.cell.2018.12.035 30682370
    [Google Scholar]
  54. BrangwynneC.P. TompaP. PappuR.V. Polymer physics of intracellular phase transitions.Nat. Phys.2015111189990410.1038/nphys3532
    [Google Scholar]
  55. BerryJ. BrangwynneC.P. HaatajaM. Physical principles of intracellular organization via active and passive phase transitions.Rep. Prog. Phys.201881404660110.1088/1361‑6633/aaa61e 29313527
    [Google Scholar]
  56. ZwickerD. DeckerM. JaenschS. HymanA.A. JülicherF. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles.Proc. Natl. Acad. Sci. USA201411126E2636E264510.1073/pnas.1404855111 24979791
    [Google Scholar]
  57. FavvasE.P. MitropoulosA.C. What is spinodal decomposition?J. Eng. Sci. Technol Review200811252710.25103/jestr.011.05
    [Google Scholar]
  58. JonesR.A. Soft Condensed Matter.Oxford University Press200210.1093/oso/9780198505907.001.0001
    [Google Scholar]
  59. NezbedaI. MelnykR. TrokhymchukA. A new concept for augmented van der Waals equations of state.J. Supercrit. Fluids201055244845410.1016/j.supflu.2010.10.041
    [Google Scholar]
  60. RowlinsonJ.S. WidomB. Molecular Theory of Capillarity.Courier Corporation2013
    [Google Scholar]
  61. CallenH.B. Thermodynamics and an Introduction to Thermostatistics1991
    [Google Scholar]
  62. WidomB. Phase Equilibria and Critical Phenomena.Cambridge University Press1967
    [Google Scholar]
  63. HuT. WangH. GomezH. Direct van der Waals simulation (DVS) of phase-transforming fluids.Sci. Adv.2023911eadg300710.1126/sciadv.adg3007 36930713
    [Google Scholar]
  64. FogliattoE.O. ClausseA. TeruelF.E. Simulation of phase separation in a van der Waals fluid under gravitational force with Lattice Boltzmann method.Int. J. Numer. Methods Heat Fluid Flow20192993095310910.1108/HFF‑11‑2018‑0682
    [Google Scholar]
  65. RidlK.S. WagnerA.J. Lattice Boltzmann simulation of mixtures with multicomponent van der Waals equation of state.Phys. Rev. E201898404330510.1103/PhysRevE.98.043305
    [Google Scholar]
  66. PhilbinJ.P. HauglandT.S. GhoshT.K. RoncaE. ChenM. NarangP. KochH. Molecular van der Waals fluids in cavity quantum electrodynamics.J. Phys. Chem. Lett.202314408988899310.1021/acs.jpclett.3c01790 37774379
    [Google Scholar]
  67. LiuJ. Thermal convection in the van der Waals fluid.In: Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty.ChamBirkhäuser2018377398
    [Google Scholar]
  68. BusuiocS. AmbruşV.E. BiciuşcăT. SofoneaV. Two-dimensional off-lattice Boltzmann model for van der Waals fluids with variable temperature.Comput. Math. Appl.202079111114010.1016/j.camwa.2018.12.015
    [Google Scholar]
  69. PhamD.Q.H. ChwastykM. CieplakM. The coexistence region in the Van der Waals fluid and the liquid-liquid phase transitions.Front Chem.202310110659910.3389/fchem.2022.1106599 36760519
    [Google Scholar]
  70. HermannJ. DiStasioR.A. TkatchenkoA. First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications.Chem. Rev.201711764714475810.1021/acs.chemrev.6b00446 28272886
    [Google Scholar]
  71. ThompsonA.P. AktulgaH.M. BergerR. BolintineanuD.S. BrownW.M. CrozierP.S. LAMMPS: A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales.Comput. Phys. Commun.202227110817110.1016/j.cpc.2021.108171
    [Google Scholar]
  72. ZhaoY. ChwastykM. CieplakM. Structural entanglements in protein complexes.J. Chem. Phys.20171462222510210.1063/1.4985221 29166058
    [Google Scholar]
  73. ZhaoY. ChwastykM. CieplakM. Topological transformations in proteins: effects of heating and proximity of an interface.Sci. Rep.2017713985110.1038/srep39851 28051124
    [Google Scholar]
  74. HensenJ.P. McDonaldI.R. Theory of Simple Liquids.New YorkAcademic Press1973
    [Google Scholar]
  75. ChwastykM. Galera-PratA. SikoraM. Gómez-SiciliaÀ. Carrión-VázquezM. CieplakM. Theoretical tests of the mechanical protection strategy in protein nanomechanics.Proteins201482571772610.1002/prot.24436 24123195
    [Google Scholar]
  76. GunnooM. CazadeP.A. OrlowskiA. ChwastykM. LiuH. TaD.T. CieplakM. NashM. ThompsonD. Steered molecular dynamics simulations reveal the role of Ca 2+ in regulating mechanostability of cellulose-binding proteins.Phys. Chem. Chem. Phys.20182035226742268010.1039/C8CP00925B 30132772
    [Google Scholar]
  77. ChwastykM. CieplakM. Conformational biases of α-synuclein and formation of transient knots.J. Phys. Chem. B20201241111910.1021/acs.jpcb.9b08481 31805238
    [Google Scholar]
  78. ChwastykM. PanekE.A. MalinowskiJ. JaskólskiM. CieplakM. Properties of cavities in biological structures: A survey of the Protein Data Bank.Front. Mol. Biosci.2020759138110.3389/fmolb.2020.591381 33240933
    [Google Scholar]
  79. ChwastykM. JaskólskiM. CieplakM. Structure‐based analysis of thermodynamic and mechanical properties of cavity‐containing proteins – case study of plant pathogenesis‐related proteins of class 10.FEBS J.2014281141642910.1111/febs.12611 24206126
    [Google Scholar]
  80. ChwastykM. JaskólskiM. CieplakM. The volume of cavities in proteins and virus capsids.Proteins20168491275128610.1002/prot.25076 27231838
    [Google Scholar]
  81. ChwastykM. CieplakM. Nascent folding of proteins across the three domains of life.Front. Mol. Biosci.2021869223069223010.3389/fmolb.2021.692230 34164435
    [Google Scholar]
  82. StephanS. TholM. VrabecJ. HasseH. Thermophysical properties of the Lennard-Jones fluid: Database and data assessment.J. Chem. Inf. Model.201959104248426510.1021/acs.jcim.9b00620 31609113
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037360348250528003832
Loading
/content/journals/cpps/10.2174/0113892037360348250528003832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test