Skip to content
2000
Volume 6, Issue 2
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Inter-individual variations in response to pharmacotherapy such as adverse effects, treatment resistance and toxicities affect all patient populations. Multidrug resistance associated proteins (MRPs) work as efflux pumps for many xenobiotics and endogenous substances and hence, can affect the drug concentration at the target site which governs therapeutic response. Genetic polymorphisms of the MRPs can lead to an over- or under-expression of these transporter proteins. These polymorphisms can therefore play an integral role in drug disposition and therapeutic outcomes via pharmacokinetic and pharmacodynamic changes. These changes may cause drug-drug interactions, treatment resistance and/or toxicity. Overexpression of certain MRPs is thought to correlate with multidrug resistance in pharmacotherapy, especially with anticancer drugs. It is also evident that some genetic variants linked with MRP genes can lead to disease states such as pseudoxanthoma elasticum. With further research, more definitive functional characterization of MRPs and the understanding of this relationship with genetic polymorphisms can be achieved. This article highlights the genetic polymorphisms of MRPs and their clinical implications with an emphasis on MRP1-4. It also provides an insight into the role that these proteins can play in disease states and toxicities as well as the implications for future research and patient management.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/1875692110806020134
2008-06-01
2025-09-01
Loading full text...

Full text loading...

/content/journals/cppm/10.2174/1875692110806020134
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test