Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Introduction

(Mtb) is the primary cause of infectious tuberculosis (TB) and is primarily spread through respiratory droplets. TB is an ancient disease discovered a century ago, and still despite all the advances in the medical sciences, this disease continues to be one of the top 10 diseases. WHO reported that in 2024, 10.6 million people were infected with TB, and 1.6 million fatalities were linked to the disease. The conventional TB treatment encompasses the use of antimicrobial drugs, but due to shortcomings like the emergence of antimicrobial resistance, lengthy treatment protocols, side effects, and drug tolerance, antimicrobial therapies are not yielding successful outcomes in TB treatment. Therefore, an alternate approach to the conventional TB treatment protocol is warranted.

Methods

A meticulous evaluation of scientific, qualitative, and quantitative research from the most prominent scientific databases was carried out. We searched Embase, Scopus, Web of Science, Google Scholar, and PubMed literature on TB management up to date. The present study discusses immunotherapy and drug repurposing as emerging potential alternate treatment options for combating TB. This study examines TB resistance, the immunotherapy approach, and the mechanism of action of all repurposing drugs for effective multidrug-resistant TB (MDR-TB) management.

Results

Many studies have been conducted globally for effective drug repurposing and immunotherapy for multidrug-resistant TB (MDR-TB) management. The success of immunotherapy in treating fatal diseases in the previous years has been in the limelight, and treating infectious diseases like TB with immunotherapeutic approaches holds great promise.

Discussion

Conventional TB treatments face challenges like resistance and long durations. Immunotherapy and drug repurposing offer promising alternatives by enhancing immune response and using existing drugs with new applications. These strategies could improve outcomes in MDR-TB and warrant further clinical investigation.

Conclusion

In this review, we have summarised the immunomodulatory drugs that have been repurposed for tuberculosis treatment. Drug repurposing is a cost-effective and time-efficient method of developing new drugs by repurposing an existing drug for a new therapeutic use.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921381395250614152438
2025-06-24
2025-09-01
Loading full text...

Full text loading...

References

  1. BahloolA.Z. GrantC. CryanS.A. KeaneJ. O’SullivanM.P. All trans retinoic acid as a host-directed immunotherapy for tuberculosis.Curr Res Immunol20223547210.1016/j.crimmu.2022.03.00335496824
    [Google Scholar]
  2. PaiM. BehrM.A. DowdyD. Tuberculosis.Nat. Rev. Dis. Primers2016211607610.1038/nrdp.2016.7627784885
    [Google Scholar]
  3. Global tuberculosis report2021Geneva, SwitzerlandWorld Health Organization2021157
    [Google Scholar]
  4. BagcchiS. WHO’s global tuberculosis report 2022.Lancet Microbe2023412010.1016/S2666‑5247(22)00359‑736521512
    [Google Scholar]
  5. SaundersB.M. FrankA.A. OrmeI.M. Granuloma formation is required to contain bacillus growth and delay mortality in mice chronically infected with Mycobacterium tuberculosis.Immunology199998332432810.1046/j.1365‑2567.1999.00877.x10583589
    [Google Scholar]
  6. EsmailH. BarryC.E. YoungD.B. WilkinsonR.J. The ongoing challenge of latent tuberculosis.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916452013043710.1098/rstb.2013.043724821923
    [Google Scholar]
  7. MoodleyR. GodecT.R. Short-course treatment for multidrug-resistant tuberculosis: The STREAM trials.Eur. Respir. Rev.201625139293510.1183/16000617.0080‑201526929418
    [Google Scholar]
  8. AbubakarI. PimpinL. AritiC. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette–Guérin vaccination against tuberculosis.Health Technol. Assess.201317371372[v-vi.10.3310/hta1737024021245
    [Google Scholar]
  9. MangtaniP. AbubakarI. AritiC. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials.Clin. Infect. Dis.201458447048010.1093/cid/cit79024336911
    [Google Scholar]
  10. YuH. YuH. Optimising cancer therapeutics: An in vitro and in silico approach. Thesis, Aston University2023
    [Google Scholar]
  11. YashodharaB.M. HuatC.B. NaikL.N. Multidrug and extensively drug-resistant tuberculosis from a general practice perspective.Infect. Drug Resist.2010311512210.2147/IDR.S10743
    [Google Scholar]
  12. KochiA. VareldzisB. StybloK. Multidrug-resistant tuberculosis and its control.Res. Microbiol.1993144210411010.1016/0923‑2508(93)90023‑U8337467
    [Google Scholar]
  13. Guidelines for Surveillance of Drug Resistance in Tuberculosis.5th EDGeneva, SwitzerlandWorld Health Organization2015176
    [Google Scholar]
  14. ChristW. Regulatory requirements for clinical evaluation of antimicrobial agents.Eur. J. Clin. Microbiol. Infect. Dis.19909753754110.1007/BF019642992226488
    [Google Scholar]
  15. HoelscherM. Barros-AguirreD. DaraM. Candidate anti-tuberculosis medicines and regimens under clinical evaluation.Clin. Microbiol. Infect.20243091131113810.1016/j.cmi.2024.06.01638909687
    [Google Scholar]
  16. MiJ. LiangY. LiangJ. The research progress in immunotherapy of tuberculosis.Front. Cell. Infect. Microbiol.20211176359110.3389/fcimb.2021.76359134869066
    [Google Scholar]
  17. YangL. ZhuangL. YeZ. LiL. GuanJ. GongW. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions.iScience2023261010788110.1016/j.isci.2023.10788137841590
    [Google Scholar]
  18. MartinoA. MeravigliaS. El DakerS. DieliF. MartiniF. ΓδT. Cells Cross-link Innate and Adaptive Immunity in Mycobacterium Tuberculosis Infection.J. Immunol. Res.20111587315
    [Google Scholar]
  19. GhanaviJ. FarniaP. FarniaP. VelayatiA.A. WakjiraK. The role of interferon-gamma and interferon-gamma receptor in tuberculosis and nontuberculous mycobacterial infections.Int. J. Mycobacteriol.202110434935710.4103/ijmy.ijmy_186_2134916451
    [Google Scholar]
  20. SonaliS. Synthesis, biological evaluation, and computational studies of thiazolyl hydrazone derivatives as triple mutant allosteric egfr inhibitors.J. Chin. Chem. Soc. (Taipei)20241610.1002/jccs.202400084
    [Google Scholar]
  21. GaoX.F. YangZ.W. LiJ. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: A systematic review.Int. J. Infect. Dis.2011159e594e60010.1016/j.ijid.2011.05.00221715206
    [Google Scholar]
  22. ZhangR. XiX. WangC. Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: A systematic review and meta-analysis.PLoS One2018137020102510.1371/journal.pone.020102530024982
    [Google Scholar]
  23. ShengL. LiX. WengF. WuS. ChenY. LouL. Efficacy and safety of adjunctive recombinant human interleukin-2 for patients with pulmonary tuberculosis: A meta-analysis.J. Trop. Med.2022202211810.1155/2022/507181636467716
    [Google Scholar]
  24. TanQ. MinR. DaiG. Clinical and immunological effects of rhil-2 therapy in eastern chinese patients with multidrug-resistant tuberculosis.Sci. Rep.2017711785410.1038/s41598‑017‑18200‑529259310
    [Google Scholar]
  25. JohnsonJ.L. SsekasanvuE. OkweraA. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis.Am. J. Respir. Crit. Care Med.2003168218519110.1164/rccm.200211‑1359OC12702550
    [Google Scholar]
  26. LinC.H. HünigT. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist.Eur. J. Immunol.200333362663810.1002/eji.20032357012616483
    [Google Scholar]
  27. Francisco-CruzA. Aguilar-SantelisesM. Ramos-EspinosaO. Granulocyte–macrophage colony-stimulating factor: Not just another haematopoietic growth factor.Med. Oncol.201431177410.1007/s12032‑013‑0774‑624264600
    [Google Scholar]
  28. Pedral-SampaioD.B. NettoE.M. BritesC. Use of rhu-GM-CSF in pulmonary tuberculosis patients: Results of a randomized clinical trial.Braz. J. Infect. Dis.20037424525210.1590/S1413‑8670200300040000414533985
    [Google Scholar]
  29. UllrichK.A.M. SchulzeL.L. PaapE.M. MüllerT.M. NeurathM.F. ZundlerS. Immunology of IL-12: An update on functional activities and implications for disease.EXCLI J.2020191563158910.17179/excli2020‑310433408595
    [Google Scholar]
  30. Tait WojnoE.D. HunterC.A. StumhoferJ.S. The immunobiology of the interleukin-12 family: Room for discovery.Immunity201950485187010.1016/j.immuni.2019.03.01130995503
    [Google Scholar]
  31. CooperA.M. SolacheA. KhaderS.A. Interleukin-12 and tuberculosis: An old story revisited.Curr. Opin. Immunol.200719444144710.1016/j.coi.2007.07.004
    [Google Scholar]
  32. ZumlaA. RaoM. DodooE. MaeurerM. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis.BMC Med.20161418910.1186/s12916‑016‑0635‑127301245
    [Google Scholar]
  33. RiccardiN. AlagnaR. SaderiL. Towards tailored regimens in the treatment of drug-resistant tuberculosis: A retrospective study in two Italian reference Centres.BMC Infect. Dis.201919156410.1186/s12879‑019‑4211‑031253115
    [Google Scholar]
  34. PrasadS. GuptaS.C. AggarwalB.B. Serendipity in cancer drug discovery: Rational or coincidence?Trends Pharmacol. Sci.201637643545010.1016/j.tips.2016.03.00427083322
    [Google Scholar]
  35. CorreiaA.S. GärtnerF. ValeN. Drug combination and repurposing for cancer therapy: The example of breast cancer.Heliyon2021710594810.1016/j.heliyon.2021.e0594833490692
    [Google Scholar]
  36. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  37. IshidaJ. KonishiM. EbnerN. SpringerJ. Repurposing of approved cardiovascular drugs.J. Transl. Med.201614126910.1186/s12967‑016‑1031‑527646033
    [Google Scholar]
  38. MalikJ.A. AhmedS. MominS.S. Drug repurposing: A new hope in drug discovery for prostate cancer.ACS Omega202381567310.1021/acsomega.2c0582136643505
    [Google Scholar]
  39. AlsaadN. WilffertB. van AltenaR. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis.Eur. Respir. J.201443388489710.1183/09031936.0011371323988774
    [Google Scholar]
  40. Ávalos-MorenoM. López-TejadaA. Blaya-CánovasJ.L. Drug repurposing for triple-negative breast cancer.J. Pers. Med.202010420010.3390/jpm1004020033138097
    [Google Scholar]
  41. LeãoC. BorgesA. SimõesM. NSAIDs as a drug repurposing strategy for biofilm control.Antibiotics20209959110.3390/antibiotics909059132927675
    [Google Scholar]
  42. VilaplanaC. MarzoE. TapiaG. DiazJ. GarciaV. CardonaP.J. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis.J. Infect. Dis.2013208219920210.1093/infdis/jit15223564636
    [Google Scholar]
  43. ByrneS.T. DenkinS.M. ZhangY. Aspirin and ibuprofen enhance pyrazinamide treatment of murine tuberculosis.J. Antimicrob. Chemother.200659231331610.1093/jac/dkl48617185297
    [Google Scholar]
  44. MayH.C. YuJ.J. GuentzelM.N. ChambersJ.P. CapA.P. ArulanandamB.P. Repurposing auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system.Front. Microbiol.2018933610.3389/fmicb.2018.0033629556223
    [Google Scholar]
  45. ElkashifA. SeleemM.N. Investigation of auranofin and gold-containing analogues antibacterial activity against multidrug-resistant Neisseria gonorrhoeae.Sci. Rep.2020101560210.1038/s41598‑020‑62696‑332221472
    [Google Scholar]
  46. RuthM.M. van RossumM. KoekenV.A.C.M. Auranofin activity exposes thioredoxin reductase as a viable drug target in Mycobacterium abscessus.Antimicrob. Agents Chemother.2019639e00449e1910.1128/AAC.00449‑1931262763
    [Google Scholar]
  47. SkerryC. PinnM.L. BruinersN. PineR. GennaroM.L. KarakousisP.C. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen.J. Antimicrob. Chemother.20146992453245710.1093/jac/dku16624855121
    [Google Scholar]
  48. DuttaN.K. BruinersN. ZimmermanM.D. Adjunctive host-directed therapy with statins improves tuberculosis-related outcomes in mice.J. Infect. Dis.202022171079108710.1093/infdis/jiz51731605489
    [Google Scholar]
  49. DuttaN.K. BruinersN. PinnM.L. Statin adjunctive therapy shortens the duration of TB treatment in mice.J. Antimicrob. Chemother.20167161570157710.1093/jac/dkw01426903278
    [Google Scholar]
  50. Guerra-De-BlasP.D.C. Torres-GonzálezP. Bobadilla-Del-ValleM. Sada-OvalleI. Ponce-De-León-GarduñoA. Sifuentes-OsornioJ. Potential effect of statins on Mycobacterium tuberculosis infection.J. Immunol. Res.2018201811410.1155/2018/761702330581876
    [Google Scholar]
  51. AdilM. KhanR.A. KalamA. Effect of anti-diabetic drugs on bone metabolism: Evidence from preclinical and clinical studies.Pharmacol. Rep.20176961328134010.1016/j.pharep.2017.05.00829132091
    [Google Scholar]
  52. KyrklundC. BackmanJ.T. KivistöK.T. NeuvonenM. LaitilaJ. NeuvonenP.J. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations.Clin. Pharmacol. Ther.200068659259710.1067/mcp.2000.11141411180018
    [Google Scholar]
  53. SiddiquiA.N. HussainS. SiddiquiN. KhayyamK.U. TabrezS. SharmaM. Detrimental association between diabetes and tuberculosis: An unresolved double trouble.Diabetes Metab. Syndr.20181261101110710.1016/j.dsx.2018.05.00929802074
    [Google Scholar]
  54. MarupuruS. SenapatiP. PathadkaS. MirajS.S. UnnikrishnanM.K. ManuM.K. Protective effect of metformin against tuberculosis infections in diabetic patients: An observational study of south Indian tertiary healthcare facility.Braz. J. Infect. Dis.201721331231610.1016/j.bjid.2017.01.00128199824
    [Google Scholar]
  55. XianH. LiuY. Rundberg NilssonA. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation.Immunity202154714631477.e1110.1016/j.immuni.2021.05.00434115964
    [Google Scholar]
  56. RekhaM.M. MaheswariE. Clinical pharmacist interventions over anti-tubercular treatment strategies in management of drug related problems.African J Biol Sci2024691810.33472/AFJBS.6.9.2024.4263‑4288
    [Google Scholar]
  57. TungE.W.Y. WinnL.M. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube defects.Mol. Pharmacol.201180697998710.1124/mol.111.07231421868484
    [Google Scholar]
  58. Nieto-PatlánE. Serafín-LópezJ. Wong-BaezaI. Valproic acid promotes a decrease in mycobacterial survival by enhancing nitric oxide production in macrophages stimulated with IFN-γ.Tuberculosis201911412312610.1016/j.tube.2018.12.00730711151
    [Google Scholar]
  59. CalderazzoM. RendeP. GambardellaP. ColosimoM. De SarroG. GallelliL. Clinical management of carbamazepine intoxication during anti-tubercular treatment: A case report.Clin Manag Issues201592414410.7175/cmi.v9i2.1175
    [Google Scholar]
  60. WallisR.S. van VuurenC. PotgieterS. Adalimumab treatment of life-threatening tuberculosis.Clin. Infect. Dis.200948101429143210.1086/59850419364287
    [Google Scholar]
  61. CantiniF. NiccoliL. GolettiD. Adalimumab, etanercept, infliximab, and the risk of tuberculosis: Data from clinical trials, national registries, and postmarketing surveillance.J. Rheumatol. Suppl.201491475510.3899/jrheum.14010224789000
    [Google Scholar]
  62. RahatI. YadavP. SinghalA. Polymer lipid hybrid nanoparticles for phytochemical delivery: Challenges, progress, and future prospects.Beilstein J. Nanotechnol.2024151473149710.3762/bjnano.15.11839600519
    [Google Scholar]
  63. NapierR.J. RafiW. CheruvuM. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis.Cell Host Microbe201110547548510.1016/j.chom.2011.09.01022100163
    [Google Scholar]
  64. LeeN.R. JangJ.W. KimH.S. YhimH.Y. Imatinib mesylate-induced interstitial lung disease in a patient with prior history of Mycobacterium tuberculosis infection.Korean J. Intern. Med201530455055310.3904/kjim.2015.30.4.55026161025
    [Google Scholar]
  65. GuoZ.Y. ZhaoW.J. ZhengM.Q. Activities of biapenem against Mycobacterium tuberculosis in macrophages and mice.Biomed. Environ. Sci.201932423524110.3967/bes2019.03331217059
    [Google Scholar]
  66. BianchetM.A. PanY.H. BastaL.A.B. Structural insight into the inactivation of mycobacterium tuberculosis non-classical transpeptidase ldt mt2 by biapenem and tebipenem.BMC Biochem.2017181810.1186/s12858‑017‑0082‑4
    [Google Scholar]
  67. MycobacteriumE.D. Crossm evaluation of carbapenems for treatment of multi- and.Antimicrob. Agents Chemother.201963113
    [Google Scholar]
  68. ZundlerS. NeurathM.F. Interleukin-12: Functional activities and implications for disease.Cytokine Growth Factor Rev.201526555956810.1016/j.cytogfr.2015.07.00326182974
    [Google Scholar]
  69. BrogdenR.N. CarmineA. HeelR.C. MorleyP.A. SpeightT.M. AveryG.S. Amoxycillin/clavulanic acid: A review of its antibacterial activity, pharmacokinetics and therapeutic use.Drugs198122533736210.2165/00003495‑198122050‑000017037354
    [Google Scholar]
  70. GonzaloX. DrobniewskiF. Is there a place for -lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate.J. Antimicrob. Chemother.201368236636910.1093/jac/dks39523070734
    [Google Scholar]
  71. ConradieF. DiaconA.H. NgubaneN. Treatment of highly drug-resistant pulmonary tuberculosis.N. Engl. J. Med.20203821089390210.1056/NEJMoa190181432130813
    [Google Scholar]
  72. GilsT. LynenL. de JongB.C. Van DeunA. DecrooT. Pretomanid for tuberculosis: A systematic review.Clin. Microbiol. Infect.2022281314210.1016/j.cmi.2021.08.00734400340
    [Google Scholar]
  73. MattU. SelchowP. Dal MolinM. Chloroquine enhances the antimycobacterial activity of isoniazid and pyrazinamide by reversing inflammation-induced macrophage efflux.Int. J. Antimicrob. Agents2017501556210.1016/j.ijantimicag.2017.02.02228506804
    [Google Scholar]
  74. PastickK.A. OkaforE.C. WangF. Review: Hydroxychloroquine and Chloroquine for Treatment of SARS-CoV-2 (COVID-19).Open Forum Infect. Dis.202074ofaa13010.1093/ofid/ofaa13032363212
    [Google Scholar]
  75. Rodrigues-JuniorV.S. VillelaA.D. GonçalvesR.S.B. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection.Int. J. Antimicrob. Agents201648220320710.1016/j.ijantimicag.2016.04.02927364701
    [Google Scholar]
  76. BermudezL.E. MeekL. Mefloquine and its enantiomers are active against Mycobacterium tuberculosis in vitro and in macrophages.Tuberc. Res. Treat.201420141510.1155/2014/53081525580293
    [Google Scholar]
  77. HardsK. RobsonJ.R. BerneyM. Bactericidal mode of action of bedaquiline.J. Antimicrob. Chemother.20157072028203710.1093/jac/dkv05425754998
    [Google Scholar]
  78. WangM.G. WuS.Q. HeJ.Q. Efficacy of bedaquiline in the treatment of drug-resistant tuberculosis: A systematic review and meta-analysis.BMC Infect. Dis.202121197010.1186/s12879‑021‑06666‑834535090
    [Google Scholar]
  79. MishraA.K. YabajiS.M. DubeyR.K. Evaluation of isoprinosine to be repurposed as an adjunct anti-tuberculosis chemotherapy.Med. Hypotheses2018115778010.1016/j.mehy.2018.04.00229685203
    [Google Scholar]
  80. PlasekJ. DodulikJ. GaiP. Mortality of hospitalized patients with COVID-19: Effects of treatment options (vitamin D, anticoagulation, isoprinosine, ivermectin) assessed by propensity score matching, retrospective analysis.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.20241681354310.5507/bp.2023.04538050692
    [Google Scholar]
  81. CanezinP.H. Caleffi-FerracioliK.R. ScodroR.B.L. Intramacrophage Mycobacterium tuberculosis efflux pump gene regulation after rifampicin and verapamil exposure.J. Antimicrob. Chemother.20187371770177610.1093/jac/dky09129579201
    [Google Scholar]
  82. ChenC. GardeteS. JansenR.S. ShettyA. DickT. RheeK.Y. Verapamil targets membrane energetics in mycobacterium tuberculosis.Antimicrob. Agents Chemother.2017625e02107e0211710.1128/AAC.02107‑17
    [Google Scholar]
  83. KishkS.M. McLeanK.J. SoodS. Design and synthesis of imidazole and triazole pyrazoles as Mycobacterium Tuberculosis CYP121A1 inhibitors.ChemistryOpen201987995101110.1002/open.20190022731367508
    [Google Scholar]
  84. AnQ. LiC. ChenY. DengY. YangT. LuoY. Repurposed drug candidates for antituberculosis therapy.Eur. J. Med. Chem.202019211217510.1016/j.ejmech.2020.11217532126450
    [Google Scholar]
  85. AmeenS.M. DrancourtM. In vitro susceptibility of Mycobacterium tuberculosis to trimethoprim and sulfonamides in France.Antimicrob. Agents Chemother.201357126370637110.1128/AAC.01683‑1324060877
    [Google Scholar]
  86. StephanieF. SaragihM. TambunanU.S.F. Recent progress and challenges for drug-resistant tuberculosis treatment.Pharmaceutics202113559210.3390/pharmaceutics1305059233919204
    [Google Scholar]
  87. ChoiY. LeeS.W. KimA. Safety, tolerability and pharmacokinetics of 21 day multiple oral administration of a new oxazolidinone antibiotic, LCB01-0371, in healthy male subjects.J. Antimicrob. Chemother.201873118319010.1093/jac/dkx36729069400
    [Google Scholar]
  88. AlcaláL. Ruiz-SerranoM.J. Pérez-Fernández TuréganoC. In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs.Antimicrob. Agents Chemother.200347141641710.1128/AAC.47.1.416‑417.200312499228
    [Google Scholar]
  89. DietzeR. HadadD.J. McGeeB. Early and extended early bactericidal activity of linezolid in pulmonary tuberculosis.Am. J. Respir. Crit. Care Med.2008178111180118510.1164/rccm.200806‑892OC18787216
    [Google Scholar]
  90. ParkI-N. HongS.B. OhY.M. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis.J. Antimicrob. Chemother.200658370170410.1093/jac/dkl29816857689
    [Google Scholar]
  91. VinhD.C. RubinsteinE. Linezolid: A review of safety and tolerability.J. Infect.200959Suppl. 1S59S7410.1016/S0163‑4453(09)60009‑819766891
    [Google Scholar]
  92. WangJ. XiaL. WangR. CaiY. Linezolid and its immunomodulatory effect: In vitro and in vivo evidence.Front. Pharmacol.201910138910.3389/fphar.2019.01389
    [Google Scholar]
  93. PichereauS. MoranJ.J.M. HayneyM.S. ShuklaS.K. SakoulasG. RoseW.E. Concentration-dependent effects of antimicrobials on Staphylococcus aureus toxin-mediated cytokine production from peripheral blood mononuclear cells.J. Antimicrob. Chemother.201267112312910.1093/jac/dkr41721980070
    [Google Scholar]
  94. JacquelineC. BroquetA. RoquillyA. Linezolid dampens neutrophil-mediated inflammation in methicillin-resistant Staphylococcus aureus-induced pneumonia and protects the lung of associated damages.J. Infect. Dis.2014210581482310.1093/infdis/jiu14524620024
    [Google Scholar]
  95. AgyemanA.A. Ofori-AsensoR. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: A systematic review and meta-analysis.Ann. Clin. Microbiol. Antimicrob.20161514110.1186/s12941‑016‑0156‑y27334498
    [Google Scholar]
  96. MiJ. GongW. WuX. Al AttarA.M. Advances in key drug target identification and new drug development for tuberculosis.BioMed Res. Int.202220221509931210.1155/2022/509931235252448
    [Google Scholar]
  97. FerriN. CorsiniA. Clinical evidence of statin therapy in non-dyslipidemic disorders.Pharmacol. Res.201488203010.1016/j.phrs.2014.02.00324548821
    [Google Scholar]
  98. Guerra-De-BlasP.D.C. Bobadilla-Del-ValleM. Sada-OvalleI. Simvastatin enhances the immune response against Mycobacterium tuberculosis.Front. Microbiol.201910209710.3389/fmicb.2019.02097
    [Google Scholar]
  99. Lobato1 LS, Rosa2 PS. Arthur da silva neuma statins increase rifampin mycobactericidal effect.Antimicrob. Agents Chemother.20145857665774
    [Google Scholar]
  100. DeanA.S. Tosas AuguetO. GlaziouP. 25 years of surveillance of drug-resistant tuberculosis: Achievements, challenges, and way forward.Lancet Infect. Dis.2022227e191e19610.1016/S1473‑3099(21)00808‑235248168
    [Google Scholar]
  101. KlegerisA. McGeerP. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease.Curr. Alzheimer Res.20052335536510.2174/156720505436788315974901
    [Google Scholar]
  102. DhedaK. BoothH. HuggettJ.F. JohnsonM.A. ZumlaA. RookG.A.W. Lung remodeling in pulmonary tuberculosis.J. Infect. Dis.200519271201120910.1086/44454516136463
    [Google Scholar]
  103. AshenafiS. BrighentiS. Reinventing the human tuberculosis (TB) granuloma: Learning from the cancer field.Front. Immunol.202213105972510.3389/fimmu.2022.105972536591229
    [Google Scholar]
  104. ShindeS.S. AhmedS. MalikJ.A. Therapeutic delivery of tumor suppressor mirnas for breast cancer treatment.Biology202312346710.3390/biology1203046736979159
    [Google Scholar]
  105. ShindeS.S. KilbileJ.T. ThapaS. BiradarM.S. BhusariS.S. WakteP.S. Design, synthesis, in silico studies, and anticancer activity of novel nitrobenzene thiazolyl hydrazones against the egfr.Russ. J. Bioorganic Chem.20245062483249810.1134/S1068162024060190
    [Google Scholar]
  106. PrangerA.D. van der WerfT.S. KosterinkJ.G.W. AlffenaarJ.W.C. The role of fluoroquinolones in the treatment of tuberculosis in 2019.Drugs201979216117110.1007/s40265‑018‑1043‑y30617959
    [Google Scholar]
  107. EnokiY. IshimaY. TanakaR. Pleiotropic effects of levofloxacin, fluoroquinolone antibiotics, against influenza virus-induced lung injury.PLoS One2015106013024810.1371/journal.pone.013024826086073
    [Google Scholar]
  108. MatsuiK. KashimaA. MotegiA. Norfloxacin, a fluoroquinolone antibiotic, inhibits langerhans cell-mediated th1 and th2 cell development.J. Pharm. Pharm. Sci.201922112213010.18433/jpps3033530974054
    [Google Scholar]
  109. BlasiF. TarsiaP. ManteroM. MorlacchiL.C. PifferF. Cefditoren versus levofloxacin in patients with exacerbations of chronic bronchitis: Serum inflammatory biomarkers, clinical efficacy, and microbiological eradication.Ther. Clin. Risk Manag.20139556410.2147/TCRM.S4113123430960
    [Google Scholar]
  110. RenaG. HardieD.G. PearsonE.R. The mechanisms of action of metformin.Diabetologia20176091577158510.1007/s00125‑017‑4342‑z28776086
    [Google Scholar]
  111. NaickerN. SigalA. NaidooK. Metformin as host-directed therapy for tb treatment: Scoping review.Front. Microbiol.20201143510.3389/fmicb.2020.0043532411100
    [Google Scholar]
  112. TanH. WangN. LiS. HongM. WangX. FengY. The reactive oxygen species in macrophage polarization: Human diseases.Oxid. Med. Cell. Longev.2016201611610.1155/2016/279509027143992
    [Google Scholar]
  113. SinghalA. JieL. KumarP. Metformin as adjunct antituberculosis therapy.Sci. Transl. Med.20146263263ra15910.1126/scitranslmed.300988525411472
    [Google Scholar]
  114. NovitaB.D. AliM. PranotoA. SoedionoE.I. MertaniasihN.M. Metformin induced autophagy in diabetes mellitus – Tuberculosis co-infection patients: A case study.Indian J. Tuberc.2019661646910.1016/j.ijtb.2018.04.00330797286
    [Google Scholar]
  115. SinghV. ChibaleK. Strategies to combat multi-drug resistance in tuberculosis.Acc. Chem. Res.202154102361237610.1021/acs.accounts.0c0087833886255
    [Google Scholar]
  116. BoldiM.O. Denis-LessardJ. NeziriR. Performance of microbiological tests for tuberculosis diagnostic according to the type of respiratory specimen: A 10-year retrospective study.Front. Cell. Infect. Microbiol.202313113124110.3389/fcimb.2023.113124136936773
    [Google Scholar]
  117. StorlaD.G. YimerS. BjuneG.A. A systematic review of delay in the diagnosis and treatment of tuberculosis.BMC Public Health2008811510.1186/1471‑2458‑8‑1518194573
    [Google Scholar]
  118. PawlowskiA. JanssonM. SköldM. RottenbergM.E. KälleniusG. Tuberculosis and HIV Co-Infection.PLoS Pathog.201282100246410.1371/journal.ppat.100246422363214
    [Google Scholar]
  119. GoodellA.J. SheteP.B. VremanR. Outlook for tuberculosis elimination in California: An individual-based stochastic model.PLoS One2019144021453210.1371/journal.pone.021453230964878
    [Google Scholar]
  120. SakamotoH. LeeS. IshizukaA. Challenges and opportunities for eliminating tuberculosis – leveraging political momentum of the UN high-level meeting on tuberculosis.BMC Public Health20191917610.1186/s12889‑019‑6399‑830651096
    [Google Scholar]
  121. HoftD. AbateG. Immunotherapy for tuberculosis: Future prospects.ImmunoTargets Ther.2016373710.2147/ITT.S81892
    [Google Scholar]
  122. FatimaS. BhaskarA. DwivediV.P. Repurposing immunomodulatory drugs to combat tuberculosis.Front. Immunol.20211264548510.3389/fimmu.2021.64548533927718
    [Google Scholar]
  123. LarsenS.E. BaldwinS.L. OrrM.T. Enhanced anti-Mycobacterium tuberculosis immunity over time with combined drug and immunotherapy treatment.Vaccines2018623010.3390/vaccines602003029795025
    [Google Scholar]
  124. WallisR.S. HafnerR. Advancing host-directed therapy for tuberculosis.Nat. Rev. Immunol.201515425526310.1038/nri381325765201
    [Google Scholar]
  125. KaufmannS.H.E. DorhoiA. HotchkissR.S. BartenschlagerR. Host-directed therapies for bacterial and viral infections.Nat. Rev. Drug Discov.2018171355610.1038/nrd.2017.16228935918
    [Google Scholar]
  126. LiapikouA. CillónizC. TorresA. Emerging strategies for the noninvasive diagnosis of nosocomial pneumonia.Expert Rev. Anti Infect. Ther.201917752353310.1080/14787210.2019.163501031237462
    [Google Scholar]
  127. FlorioW. BaldeschiL. RizzatoC. TavantiA. GhelardiE. LupettiA. Detection of antibiotic-resistance by maldi-tof mass spectrometry: An expanding area.Front. Cell. Infect. Microbiol.20201057290910.3389/fcimb.2020.57290933262954
    [Google Scholar]
  128. DumiakM. Cell therapy for tuberculosis and infectious diseases?Lancet Microbe2021225810.1016/S2666‑5247(21)00012‑435544243
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921381395250614152438
Loading
/content/journals/cppm/10.2174/0118756921381395250614152438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test