Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Introduction

a gram-negative, facultative anaerobic coccobacillus, is a member of the family. It causes a variety of invasive and non-invasive bacterial infections known as infections. The increasing prevalence of antibiotic resistance highlights the need to identify novel therapeutic targets for treating infections. The emerging trends in the field of Pharmacoinformatics have aided in the prediction of novel putative therapeutic targets.

Objective

This study aims to identify novel putative therapeutic targets in using a subtractive genomic approach.

Methods

Subtractive Genomics, a simple yet powerful approach for the identification of novel therapeutic targets for bacterial pathogens, was employed in this study. The core proteome of 72 strains of was analysed through a multi-step filtration process to exclude the non-essential proteins and those homologous to the human proteome. Metabolic pathway analysis was conducted to identify pathogen-specific proteins, followed by druggability analysis and three-dimensional structure prediction.

Results and Discussion

On analysing the core proteome, 115 proteins were found to be unique and non-homologous to the human proteome. Further screening of these proteins led to the identification of 25 proteins involved in the 29 unique metabolic pathways of bacteria. Subsequent analysis finally resulted in the identification of five novel therapeutic targets for that are unique, non-homologous to the human proteome, essential for bacterial survival, and involved in unique metabolic pathways of bacteria.

Conclusion

This study successfully identified five novel therapeutic targets through subtractive genomics, contributing to the efforts against antimicrobial resistance in . Further experimental validation is necessary to strengthen these findings and advance therapeutic development.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921369289250514051055
2025-01-01
2025-09-02
Loading full text...

Full text loading...

References

  1. PantheeB. GyawaliS. PantheeP. TechatoK. Environmental and human microbiome for health.Life202212345610.3390/life1203045635330207
    [Google Scholar]
  2. KostyanevT.S. Virulence factors and mechanisms of antibiotic resistance of Haemophilus influenzae.Folia Med.2012541192310.2478/v10153‑011‑0073‑y22908826
    [Google Scholar]
  3. TristramS. JacobsM.R. AppelbaumP.C. Antimicrobial resistance in Haemophilus influenzae.Clin. Microbiol. Rev.200720236838910.1128/CMR.00040‑0617428889
    [Google Scholar]
  4. Van EldereJ. SlackM.P.E. LadhaniS. CrippsA.W. Non-typeable Haemophilus influenzae, an under-recognised pathogen.Lancet Infect. Dis.201414121281129210.1016/S1473‑3099(14)70734‑025012226
    [Google Scholar]
  5. WHO2025Available from: https://www.who.int
  6. LangereisJ.D. de JongeM.I. Invasive disease caused by nontypeable Haemophilus influenzae.Emerg. Infect. Dis.201521101711171810.3201/eid2110.15000426407156
    [Google Scholar]
  7. KhattakZ.E. AnjumF. Haemophilus Influenzae.StatPearls2022
    [Google Scholar]
  8. AbavisaniM. KeikhaM. KarbalaeiM. First global report about the prevalence of multi-drug resistant Haemophilus influenzae: A systematic review and meta-analysis.BMC Infect. Dis.20242419010.1186/s12879‑023‑08930‑538225571
    [Google Scholar]
  9. JinZ. Romero-SteinerS. CarloneG.M. RobbinsJ.B. SchneersonR. Haemophilus influenzae type a infection and its prevention.Infect. Immun.20077562650265410.1128/IAI.01774‑0617353280
    [Google Scholar]
  10. BarhD. TiwariS. JainN. AliA. SantosA.R. MisraA.N. AzevedoV. KumarA. In silico subtractive genomics for target identification in human bacterial pathogens.Drug Dev. Res.201172216217710.1002/ddr.20413
    [Google Scholar]
  11. KaurN. KhokharM. JainV. BharatamP.V. SandhirR. TewariR. Identification of druggable targets for Acinetobacter baumannii via subtractive genomics and plausible inhibitors for MurA and MurB.Appl. Biochem. Biotechnol.2013171241743610.1007/s12010‑013‑0372‑223846799
    [Google Scholar]
  12. FatobaA.J. OkpekuM. AdelekeM.A. Subtractive genomics approach for identification of novel therapeutic drug targets in Mycoplasma genitalium.Pathogens202110892193310.3390/pathogens1008092134451385
    [Google Scholar]
  13. ChenL. ZhangZ. ZengQ. WangW. ZhouH. WuY. Subtractive genomics and comparative metabolic pathways profiling revealed novel drug targets in Ureaplasma urealyticum. Front. Microbiol.202415148442310.3389/fmicb.2024.148442339539704
    [Google Scholar]
  14. BlomJ. AlbaumS.P. DoppmeierD. PühlerA. VorhölterF.J. ZakrzewskiM. GoesmannA. EDGAR: A software framework for the comparative analysis of prokaryotic genomes.BMC Bioinformatics200910115410.1186/1471‑2105‑10‑15419457249
    [Google Scholar]
  15. DieckmannM.A. BeyversS. Nkouamedjo-FankepR.C. HanelP.H.G. JelonekL. BlomJ. GoesmannA. EDGAR3.0: Comparative genomics and phylogenomics on a scalable infrastructure.Nucleic Acids Res.202149W1W185W19210.1093/nar/gkab34133988716
    [Google Scholar]
  16. ZhangR. OuH.Y. ZhangC.T. DEG: A database of essential genes.Nucleic Acids Res.20043290001271D27210.1093/nar/gkh02414681410
    [Google Scholar]
  17. ZhangR. LinY. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes.Nucleic Acids Res.200937DatabaseD455D45810.1093/nar/gkn85818974178
    [Google Scholar]
  18. ChenL. YangJ. YuJ. YaoZ. SunL. ShenY. JinQ. VFDB: A reference database for bacterial virulence factors.Nucleic Acids Res.200433Database issueD325D32810.1093/nar/gki00815608208
    [Google Scholar]
  19. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  20. KanehisaM. Toward understanding the origin and evolution of cellular organisms.Protein Sci.201928111947195110.1002/pro.371531441146
    [Google Scholar]
  21. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac96336300620
    [Google Scholar]
  22. RahmanM.A. NooreM.S. HasanM.A. UllahM.R. RahmanM.H. HossainM.A. AliY. IslamM.S. Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach.Comput. Biol. Chem.201452667210.1016/j.compbiolchem.2014.09.00525254941
    [Google Scholar]
  23. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac105236408920
    [Google Scholar]
  24. YuN.Y. WagnerJ.R. LairdM.R. MelliG. ReyS. LoR. DaoP. SahinalpS.C. EsterM. FosterL.J. BrinkmanF.S.L. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.Bioinformatics201026131608161510.1093/bioinformatics/btq24920472543
    [Google Scholar]
  25. BhasinM. GargA. RaghavaG.P.S. PSLpred: Prediction of subcellular localization of bacterial proteins.Bioinformatics200521102522252410.1093/bioinformatics/bti30915699023
    [Google Scholar]
  26. MondalS.I. FerdousS. AkterA. MahmudZ. KarimN. IslamM.M. JewelN.A. AfrinT. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: An in silico approach.Adv. Appl. Bioinform. Chem.20158496310.2147/AABC.S8852226677339
    [Google Scholar]
  27. GasteigerE. HooglandC. GattikerA. DuvaudS. WilkinsM.R. AppelR.D. Protein identification and analysis tools on the expasy server.The Proteomics Protocols HandbookHumana PressTotowa, New Jersey2005571607
    [Google Scholar]
  28. JumperJ. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  29. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  30. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.55600209168401235
    [Google Scholar]
  31. DuddyO.P. BasslerB.L. Quorum sensing across bacterial and viral domains.PLoS Pathog.2021171e100907410.1371/journal.ppat.100907433411743
    [Google Scholar]
  32. VashisthaA. SharmaN. NanajiY. KumarD. SinghG. BarnwalR.P. YadavA.K. Quorum sensing inhibitors as Therapeutics: Bacterial biofilm inhibition.Bioorg. Chem.202313610655110.1016/j.bioorg.2023.10655137094480
    [Google Scholar]
  33. ScoffoneV. C. TrespidiG. ChiarelliL. R. BarbieriG. BuroniS. Quorum sensing as antivirulence target in cystic fibrosis pathogens.Int. J. Mol. Sci.2019208183810.3390/ijms2008183831013936
    [Google Scholar]
  34. WeeksJ.R. StaplesK.J. SpallutoC.M. WatsonA. WilkinsonT.M.A. The role of non-typeable Haemophilus influenzae biofilms in chronic obstructive pulmonary disease.Front. Cell. Infect. Microbiol.20211172074210.3389/fcimb.2021.72074234422683
    [Google Scholar]
  35. ArmbrusterC.E. HongW. PangB. WeimerK.E.D. JuneauR.A. TurnerJ. SwordsW.E. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling.MBio201013e00102-1010.1128/mBio.00102‑1020802829
    [Google Scholar]
  36. FleischmannR. D. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.Science1995269522349651210.1126/science.75428007542800
    [Google Scholar]
  37. BaraboteR.D. SaierM.H.Jr Comparative genomic analyses of the bacterial phosphotransferase system.Microbiol. Mol. Biol. Rev.200569460863410.1128/MMBR.69.4.608‑634.200516339738
    [Google Scholar]
  38. GuoM. WangH. XieN. XieZ. Positive effect of carbon sources on natural transformation in Escherichia coli: Role of low-level cyclic AMP (cAMP)-cAMP receptor protein in the derepression of rpoS.J. Bacteriol.2015197203317332810.1128/JB.00291‑1526260461
    [Google Scholar]
  39. MitrophanovA.Y. GroismanE.A. Signal integration in bacterial two-component regulatory systems.Genes Dev.200822192601261110.1101/gad.170030818832064
    [Google Scholar]
  40. SteeleK.H. O’ConnorL.H. BurpoN. KohlerK. JohnstonJ.W. Characterization of a ferrous iron-responsive two-component system in nontypeable Haemophilus influenzae.J. Bacteriol.2012194226162617310.1128/JB.01465‑1222961857
    [Google Scholar]
  41. IslamZ. KumarP. Inhibitors of riboflavin biosynthetic pathway enzymes as potential antibacterial drugs.Front. Mol. Biosci.202310122876310.3389/fmolb.2023.122876337496776
    [Google Scholar]
  42. RenJ. KotakaM. LockyerM. LambH.K. HawkinsA.R. StammersD.K. GTP cyclohydrolase II structure and mechanism.J. Biol. Chem.200528044369123691910.1074/jbc.M50772520016115872
    [Google Scholar]
  43. JooM. YooH.G. KimH.J. KwonH.J. ToxB encodes a canonical GTP cyclohydrolase II in toxoflavin biosynthesis and ribA expression restored toxoflavin production in a ΔtoxB mutant.J. Korean Soc. Appl. Biol. Chem.201558687788510.1007/s13765‑015‑0116‑9
    [Google Scholar]
  44. McDonaldA.G. BoyceS. TiptonK.F. ExplorEnz: The primary source of the IUBMB enzyme list.Nucleic Acids Res.200937DatabaseD593D59710.1093/nar/gkn58218776214
    [Google Scholar]
  45. WangJ. ChitsazF. DerbyshireM.K. GonzalesN.R. GwadzM. LuS. MarchlerG.H. SongJ.S. ThankiN. YamashitaR.A. YangM. ZhangD. ZhengC. LanczyckiC.J. Marchler-BauerA. The conserved domain database in 2023.Nucleic Acids Res.202351D1D384D38810.1093/nar/gkac109636477806
    [Google Scholar]
  46. ChenJ.W. ScariaJ. ChangY.F. Phenotypic and transcriptomic response of auxotrophic Mycobacterium avium subsp. paratuberculosis leuD mutant under environmental stress.PLoS One201276e3788410.1371/journal.pone.003788422675497
    [Google Scholar]
  47. BlumM. AndreevaA. FlorentinoL.C. ChuguranskyS.R. GregoT. HobbsE. PintoB.L. OrrA. Paysan-LafosseT. PonamarevaI. SalazarG.A. BordinN. BorkP. BridgeA. ColwellL. GoughJ. HaftD.H. LetunicI. Llinares-LópezF. Marchler-BauerA. Meng-PapaxanthosL. MiH. NataleD.A. OrengoC.A. PanduranganA.P. PiovesanD. RivoireC. SigristC.J.A. ThankiN. Thibaud-NissenF. ThomasP.D. TosattoS.C.E. WuC.H. BatemanA. InterPro: The protein sequence classification resource in 2025.Nucleic Acids Res.202553D1D444D45610.1093/nar/gkae108239565202
    [Google Scholar]
  48. McLaughlinP.A. McClellandM. YangH.J. PorwollikS. BogomolnayaL. ChenJ.S. Andrews-PolymenisH. van der VeldenA.W.M. Contribution of asparagine catabolism to Salmonella virulence.Infect. Immun.2017852e00740-1610.1128/IAI.00740‑1627849183
    [Google Scholar]
  49. SharmaA. Asparagine couples group A Streptococcal metabolism to virulence.bioRxiv20242024.07.08.60237110.1101/2024.07.08.602371
    [Google Scholar]
  50. LeighJ.A. DodsworthJ.A. Nitrogen regulation in bacteria and archaea.Annu. Rev. Microbiol.200761134937710.1146/annurev.micro.61.080706.09340917506680
    [Google Scholar]
  51. ArcondéguyT. JackR. MerrickM. P(II) signal transduction proteins, pivotal players in microbial nitrogen control.Microbiol. Mol. Biol. Rev.20016518010510.1128/MMBR.65.1.80‑105.200111238986
    [Google Scholar]
  52. Sánchez-CañizaresC. PrellJ. PiniF. RuttenP. KraxnerK. WynandsB. KarunakaranR. PooleP.S. Global control of bacterial nitrogen and carbon metabolism by a PTS Ntr -regulated switch.Proc. Natl. Acad. Sci. USA202011719102341024510.1073/pnas.191747111732341157
    [Google Scholar]
  53. PengC. LinY. LuoH. GaoF. A comprehensive overview of online resources to identify and predict bacterial essential genes.Front. Microbiol.20178233110.3389/fmicb.2017.0233129230204
    [Google Scholar]
  54. PetersJ.M. ColavinA. ShiH. CzarnyT.L. LarsonM.H. WongS. HawkinsJ.S. LuC.H.S. KooB.M. MartaE. ShiverA.L. WhiteheadE.H. WeissmanJ.S. BrownE.D. QiL.S. HuangK.C. GrossC.A. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria.Cell201616561493150610.1016/j.cell.2016.05.00327238023
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921369289250514051055
Loading
/content/journals/cppm/10.2174/0118756921369289250514051055
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test