Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Background/Introduction

Cancer is one of the serious health issues and the leading cause of mortality worldwide. Several studies have demonstrated that the overexpression of growth factors and receptors, the triggering of oncogenes, and the deactivation of tumor suppressor genes are the main causes of aggressive and resistant forms of cancer. The epidermal growth factor receptor (EGFR) is a receptor that medications target for cancer treatment.

Objective

The present study employs computational approaches to explore the anti-cancer activity of newly identified indole alkaloids from against EGFR kinase.

Methods

Computational techniques, including molecular docking, density functional theory (DFT), and pharmacokinetic studies, were employed to evaluate the ligand-target interactions. Additionally, drug-likeness was assessed using the Lipinski rule of five.

Results and Discussion

We evaluated their pharmacokinetics, binding interactions, and stability using molecular docking, drug-likeness prediction, absorption, distribution, metabolism, and excretion (ADMET) profiling, simulations study, and density functional theory (DFT) study. Nitidumalkaloid C showed remarkable binding affinity (-9.7 kcal/mol) to epidermal growth factor receptor tyrosine kinase, while that of standard drugs showed dacomitinib (-9.0 kcal/mol) and osimertinib (-7.9 kcal/mol). The molecular dynamics MD simulation study revealed stable interactions, with nitidumalkaloid C exhibiting the highest stability. These findings indicate indole alkaloids as potentially effective anticancer medicines, with nitidumalkaloid C demanding further modification for pharmaceutical development. This research informs nitidumalkaloid C as a potential indole alkaloid by providing insights into molecular characteristics and binding energies.

Conclusion

These parameters allow consideration of the most promising candidate, nitidumalkaloid C, for novel anticancer drug development to overcome gene mutations or resistance in EGFR-TK.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921374184250311061415
2025-03-17
2025-10-18
Loading full text...

Full text loading...

References

  1. KocarnikJ.M. ComptonK. DeanF.E. FuW. GawB.L. HarveyJ.D. HenriksonH.J. LuD. PenniniA. XuR. AbabnehE. Abbasi-KangevariM. AbbastabarH. Abd-ElsalamS.M. AbdoliA. AbediA. AbidiH. AbolhassaniH. AdedejiI.A. AdnaniQ.E.S. AdvaniS.M. AfzalM.S. AghaaliM. AhinkorahB.O. AhmadS. AhmadT. AhmadiA. AhmadiS. RashidA.T. SalihA.Y. AkaluG.T. AkliluA. AkramT. AkunnaC.J. HamadA.H. AlahdabF. Al-AlyZ. AliS. AlimohamadiY. AlipourV. AljunidS.M. AlkhayyatM. Almasi-HashianiA. AlmasriN.A. Al-MaweriS.A.A. AlmustanyirS. AlonsoN. Alvis-GuzmanN. AmuH. AnbesuE.W. AncuceanuR. AnsariF. Ansari-MoghaddamA. AntwiM.H. AnvariD. AnyasodorA.E. AqeelM. ArablooJ. Arab-ZozaniM. AremuO. AriffinH. AripovT. ArshadM. ArtamanA. ArulappanJ. AsemiZ. JafarabadiA.M. AshrafT. AtorkeyP. AujayebA. AusloosM. AwedewA.F. QuintanillaA.B.P. AyenewT. AzabM.A. AzadnajafabadS. JafariA.A. AzarianG. AzzamA.Y. BadiyeA.D. BahadoryS. BaigA.A. BakerJ.L. BalakrishnanS. BanachM. BärnighausenT.W. Barone-AdesiF. BarraF. BarrowA. BehzadifarM. BelgaumiU.I. BezabheW.M.M. BezabihY.M. BhagatD.S. BhagavathulaA.S. BhardwajN. BhardwajP. BhaskarS. BhattacharyyaK. BhojarajaV.S. BibiS. BijaniA. BiondiA. BisignanoC. BjørgeT. BleyerA. BlyussO. BolarinwaO.A. BollaS.R. BraithwaiteD. BrarA. BrennerH. Bustamante-TeixeiraM.T. ButtN.S. ButtZ.A. Caetano dos SantosF.L. CaoY. CarrerasG. Catalá-LópezF. CembranelF. CerinE. CernigliaroA. ChakinalaR.C. ChattuS.K. ChattuV.K. ChaturvediP. Chimed-OchirO. ChoD.Y. ChristopherD.J. ChuD.T. ChungM.T. CondeJ. CortésS. CortesiP.A. CostaV.M. CunhaA.R. DadrasO. DagnewA.B. DahlawiS.M.A. DaiX. DandonaL. DandonaR. DarweshA.M. NevesD.J. HozL.D.F.P. DemisA.B. Denova-GutiérrezE. DhamnetiyaD. DhimalM.L. DhimalM. DianatinasabM. DiazD. DjalaliniaS. DoH.P. DoaeiS. DorostkarF. dos Santos FigueiredoF.W. DriscollT.R. EbrahimiH. EftekharzadehS. TantawiE.M. El-AbidH. ElbaraziI. ElhabashyH.R. ElhadiM. El-JaafaryS.I. EshratiB. EskandariehS. EsmaeilzadehF. EtemadiA. EzzikouriS. FaisaluddinM. FaraonE.J.A. FaresJ. FarzadfarF. FerozeA.H. FerreroS. DesideriF.L. FilipI. FischerF. FisherJ.L. ForoutanM. FukumotoT. GaalP.A. GadM.M. GadanyaM.A. GallusS. FonsecaG.M. ObsaG.A. GhafourifardM. GhashghaeeA. GhithN. GholamalizadehM. GilaniS.A. GinindzaT.G. GizawA.T.T. GlasbeyJ.C. GolechhaM. GoleijP. GomezR.S. GopalaniS.V. GoriniG. GoudarziH. GrossoG. GubariM.I.M. GuerraM.R. GuhaA. GunasekeraD.S. GuptaB. GuptaV.B. GuptaV.K. GutiérrezR.A. Hafezi-NejadN. HaiderM.R. Haj-MirzaianA. HalwaniR. HamadehR.R. HameedS. HamidiS. HanifA. HaqueS. HarliantoN.I. HaroJ.M. HasaballahA.I. HassanipourS. HayR.J. HayS.I. HayatK. HeidariG. HeidariM. Herrera-SernaB.Y. HerteliuC. HezamK. HollaR. HossainM.M. HossainM.B.H. HosseiniM.S. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HsairiM. HuangJ. HugoF.N. HussainR. HusseinN.R. HwangB.F. IavicoliI. IbitoyeS.E. IdaF. IkutaK.S. IlesanmiO.S. IlicI.M. IlicM.D. IrhamL.M. IslamJ.Y. IslamR.M. IslamS.M.S. IsmailN.E. IsolaG. IwagamiM. JacobL. JainV. JakovljevicM.B. JavaheriT. JayaramS. JazayeriS.B. JhaR.P. JonasJ.B. JooT. JosephN. JoukarF. JürissonM. KabirA. KahriziD. KalankeshL.R. KalhorR. KaliyadanF. KalkondeY. KamathA. Kameran Al-SalihiN. KandelH. KapoorN. KarchA. KasaA.S. KatikireddiS.V. KauppilaJ.H. KavetskyyT. KebedeS.A. KeshavarzP. KeykhaeiM. KhaderY.S. KhalilovR. KhanG. KhanM. KhanM.N. KhanM.A.B. KhangY.H. KhaterA.M. KhayamzadehM. KimG.R. KimY.J. KisaA. KisaS. Kissimova-SkarbekK. KopecJ.A. KoteeswaranR. KoulP.A. LaxminarayanaK.S.L. KoyanagiA. BicerK.B. KugbeyN. KumarG.A. KumarN. KumarN. KurmiO.P. KutlukT. VecchiaL.C. LamiF.H. LandiresI. LauriolaP. LeeS. LeeS.W.H. LeeW.C. LeeY.H. LeighJ. LeongE. LiJ. LiM.C. LiuX. LoureiroJ.A. LuneviciusR. Magdy Abd El RazekM. MajeedA. MakkiA. MaleS. MalikA.A. MansourniaM.A. MartiniS. MasoumiS.Z. MathurP. McKeeM. MehrotraR. MendozaW. MenezesR.G. MengeshaE.W. MesregahM.K. MestrovicT. JonassonM.J. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirzaeiH. MirzaeiH.R. MisraS. MithraP. MoghadaszadehM. MohammadK.A. MohammadY. MohammadiM. MohammadiS.M. Mohammadian-HafshejaniA. MohammedS. MokaN. MokdadA.H. MolokhiaM. MonastaL. MoniM.A. MoosaviM.A. MoradiY. MoragaP. Morgado-da-CostaJ. MorrisonS.D. MosapourA. MubarikS. MwanriL. NagarajanA.J. NagarajuS.P. NagataC. NaimzadaM.D. NangiaV. NaqviA.A. SwamyN.S. NdejjoR. NduagubaS.O. NegoiI. NegruS.M. KandelN.S. NguyenC.T. NguyenH.L.T. NiaziR.K. NnajiC.A. NoorN.M. Nuñez-SamudioV. NzoputamC.I. OanceaB. OchirC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OlakundeB.O. OmarE. BaliO.A. OmonisiA.E.E. OngS. OnwujekweO.E. OrruH. Ortega-AltamiranoD.V. OtstavnovN. OtstavnovS.S. OwolabiM.O. AP.M. PadubidriJ.R. PakshirK. PanaA. PanagiotakosD. Panda-JonasS. PardhanS. ParkE.C. ParkE.K. KanP.F. PatelH.K. PatelJ.R. PatiS. PattanshettyS.M. PaudelU. PereiraD.M. PereiraR.B. PerianayagamA. PillayJ.D. PirouzpanahS. PishgarF. PodderI. PostmaM.J. PourjafarH. PrashantA. PreotescuL. RabieeM. RabieeN. RadfarA. RadhakrishnanR.A. RadhakrishnanV. RafieeA. RahimF. RahimzadehS. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RajeshA. RakovacI. RamP. RamezanzadehK. RanabhatK. RanasingheP. RaoC.R. RaoS.J. RawassizadehR. RazeghiniaM.S. RenzahoA.M.N. RezaeiN. RezaeiN. RezapourA. RobertsT.J. RodriguezJ.A.B. RohloffP. RomoliM. RonfaniL. RoshandelG. RwegereraG.M. SM. SabourS. SaddikB. SaeedU. SahebkarA. SahooH. SalehiS. SalemM.R. SalimzadehH. SamaeiM. SamyA.M. SanabriaJ. SankararamanS. Santric-MilicevicM.M. SardiwallaY. SarveazadA. SathianB. SawhneyM. SaylanM. SchneiderI.J.C. SekerijaM. SeylaniA. ShafaatO. ShaghaghiZ. ShaikhM.A. ShamsoddinE. ShannawazM. SharmaR. SheikhA. SheikhbahaeiS. ShettyA. ShettyJ.K. ShettyP.H. ShibuyaK. ShirkoohiR. ShivakumarK.M. ShivarovV. SiabaniS. MalleshappaS.S.K. SilvaD.A.S. SinghJ.A. SintayehuY. SkryabinV.Y. SkryabinaA.A. SoebergM.J. Sofi-MahmudiA. SotoudehH. SteiropoulosP. StraifK. SubediR. SufiyanM.B. SultanI. SultanaS. SurD. SzerencsésV. SzócskaM. Tabarés-SeisdedosR. TabuchiT. TadbiriH. TaherkhaniA. TakahashiK. TalaatI.M. TanK.K. TatV.Y. TedlaB.A.A. TeferaY.G. Tehrani-BanihashemiA. TemsahM.H. TesfayF.H. TessemaG.A. ThaparR. ThavamaniA. ChandrasekarT.V. ThomasN. TohidinikH.R. TouvierM. Tovani-PaloneM.R. TrainiE. TranB.X. TranK.B. TranM.T.N. TripathyJ.P. TusaB.S. UllahI. UllahS. UmapathiK.K. UnnikrishnanB. UpadhyayE. VacanteM. VaeziM. TahbazV.S. VelazquezD.Z. VerouxM. ViolanteF.S. VlassovV. VoB. VoloviciV. VuG.T. WaheedY. WamaiR.G. WardP. WenY.F. WestermanR. WinklerA.S. YadavL. JabbariY.S.H. YangL. YayaS. YazieT.S.Y. YeshawY. YonemotoN. YounisM.Z. YousefiZ. YuC. YuceD. YunusaI. ZadnikV. ZareF. ZastrozhinM.S. ZastrozhinaA. ZhangJ. ZhongC. ZhouL. ZhuC. ZiapourA. ZimmermannI.R. FitzmauriceC. MurrayC.J.L. ForceL.M. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019.JAMA Oncol.20228342044410.1001/jamaoncol.2021.698734967848
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  3. SeshacharyuluP. PonnusamyM.P. HaridasD. JainM. GantiA.K. BatraS.K. Targeting the EGFR signaling pathway in cancer therapy.Expert Opin. Ther. Targets2012161153110.1517/14728222.2011.64861722239438
    [Google Scholar]
  4. ShiX. P. GuanR. Q. ZhangM. D. Progress in the study of zanthoxylum alkaloids..Chin. Wild. Plant. Res.20102917
    [Google Scholar]
  5. KarnikK.S. SarkateA.P. TiwariS.V. AzadR. WakteP.S. Free energy perturbation guided synthesis with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC).Bioorg. Chem.202111510522610.1016/j.bioorg.2021.10522634364055
    [Google Scholar]
  6. YangG. ChenD. Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects.Chem. Biodivers.2008591718172210.1002/cbdv.20089016018816524
    [Google Scholar]
  7. LuY. ZhangC. BucheliP. WeiD. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China.Plant Foods Hum. Nutr.2006612556310.1007/s11130‑006‑0014‑816816988
    [Google Scholar]
  8. Fernández-SomoanoA. Álvarez-AvellónS.M. Souto-GarcíaA. VioqueJ. Navarrete-MuñozE.M. TardónA. Alcohol consumption and lung cancer according to ile349val polymorphism in ADH3 gene: Beyond the tobacco smoking effect.J. Cancer20178122296230210.7150/jca.1885328819433
    [Google Scholar]
  9. WangF.F. TaoP.F. ZhongY.J. GuY.Q. WangC.Y. QinF. Alkaloids from Zanthoxylum nitidum and their anti-proliferative activity against A549 cells by regulating the EGFR/AKT/mTOR pathway.Nat. Prod. Res.202401710.1080/14786419.2024.234746338684029
    [Google Scholar]
  10. DayyaniF. GallickG.E. LogothetisC.J. CornP.G. Novel therapies for metastatic castrate-resistant prostate cancer.J. Natl. Cancer Inst.2011103221665167510.1093/jnci/djr36221917607
    [Google Scholar]
  11. YangC.H. ChengM.J. ChiangM.Y. KuoY.H. WangC.J. ChenI.S. Dihydrobenzo[ c ]phenanthridine Alkaloids from Stem Bark of Zanthoxylum nitidum.J. Nat. Prod.200871466967310.1021/np700745f18303853
    [Google Scholar]
  12. DuanH. QuL. ShouC. Activation of EGFR-PI3K-AKT signaling is required for Mycoplasma hyorhinis-promoted gastric cancer cell migration.Cancer Cell Int.201414113510.1186/s12935‑014‑0135‑325505372
    [Google Scholar]
  13. DavisN.M. SokoloskyM. StadelmanK. AbramsS.L. LibraM. CandidoS. NicolettiF. PoleselJ. MaestroR. D’AssoroA. DrobotL. RakusD. GizakA. LaidlerP. Dulińska-LitewkaJ. BaseckeJ. MijatovicS. Maksimovic-IvanicD. MontaltoG. CervelloM. FitzgeraldT.L. DemidenkoZ.N. MartelliA.M. CoccoL. SteelmanL.S. McCubreyJ.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention.Oncotarget20145134603465010.18632/oncotarget.220925051360
    [Google Scholar]
  14. RathodS. ShindeS. ChoudhariP. SarkateA. ChaudhariS. ShinganA. Exploring binding potential of two new indole alkaloids from Nauclea officinalis against third and fourth generation EGFR: Druglikeness, in silico ADMET, docking, DFT, molecular dynamics simulation, and MMGBSA study.Nat. Prod. Res.20241810.1080/14786419.2023.230167838206888
    [Google Scholar]
  15. RathodS.S. ShindeS.S. ChoudhariP.B. DhavaleR.P. SarkateA.P. Computational and experimental approaches to decipher the complexity of diseases.Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex DiseasesSingaporeSpringer202439341310.1007/978‑981‑99‑9462‑5_15
    [Google Scholar]
  16. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  17. KumarS.A. KudvaJ. LahtinenM. PeuronenA. SadashivaR. NaralD. Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives.J. Mol. Struct.20191190293610.1016/j.molstruc.2019.04.050
    [Google Scholar]
  18. DainaA. ZoeteV. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
  19. BakaleR.D. PhatakP.S. RathodS.S. ChoudhariP.B. RekhaE.M. SriramD. HavalK.P. In Vitro and in Silico Exploration of Newly Synthesized Triazolyl-Isonicotinohydrazides as Potent Antitubercular Agents.J. Biomol. Struct. Dyn.202543313729138079301
    [Google Scholar]
  20. ZardeckiC. DuttaS. GoodsellD.S. VoigtM. BurleyS.K. RCSB Protein data bank: A resource for chemical, biochemical, and structural explorations of large and small biomolecules.J. Chem. Educ.201693356957510.1021/acs.jchemed.5b00404
    [Google Scholar]
  21. GajiwalaK.S. FengJ. FerreR. RyanK. BrodskyO. WeinrichS. KathJ.C. StewartA. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition.Structure201321220921910.1016/j.str.2012.11.01423273428
    [Google Scholar]
  22. ShindeS. RathodS. in silico modeling and drug design.Meth. Rat. Drug Des.20241153165
    [Google Scholar]
  23. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  24. MendelsohnL.D. ChemDraw 8 Ultra, Windows and Macintosh Versions.J. Chem. Inf. Comput. Sci.20044462225222610.1021/ci040123t
    [Google Scholar]
  25. SnyderH.D. KucukkalT.G. Computational chemistry activities with avogadro and ORCA.J. Chem. Educ.20219841335134110.1021/acs.jchemed.0c00959
    [Google Scholar]
  26. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  27. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  28. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  29. PatialP.K. CannooD.S. Phytochemical profile, antioxidant potential and DFT study of Araucaria columnaris (G. Forst.) Hook. Branch extracts.Nat. Prod. Res.202135224611461510.1080/14786419.2019.169633031782675
    [Google Scholar]
  30. BeckersM. SturmN. SirockinF. FechnerN. StieflN. Prediction of small-molecule developability using large-scale in silico ADMET models.J. Med. Chem.20236620140471406010.1021/acs.jmedchem.3c0108337815201
    [Google Scholar]
  31. ShindeS.S. AhmedS. MalikJ.A. HaniU. KhanamA. BhatA.F. MirA.S. GhazwaniM. WahabS. HaiderN. AlmehiziaA.A. Therapeutic delivery of tumor suppressor mirnas for breast cancer treatment.Biology202312346710.3390/biology1203046736979159
    [Google Scholar]
  32. PaduleK. ShindeS. ChitlangeS. GiramP. NagoreD. The advancement of herbal-based nanomedicine for hair.Cosmetics20229611810.3390/cosmetics9060118
    [Google Scholar]
  33. CrucianiG. CarosatiE. BoeckD.B. EthirajuluK. MackieC. HoweT. VianelloR. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist.J. Med. Chem.200548226970697910.1021/jm050529c16250655
    [Google Scholar]
  34. MekniN. CoronnelloC. LangerT. RosaM.D. PerriconeU. Support vector machine as a supervised learning for the prioritization of novel potential SARS-cov-2 main protease inhibitors.Int. J. Mol. Sci.20212214771410.3390/ijms2214771434299333
    [Google Scholar]
  35. ShindeS.S. SarkateA.P. ChituriK.K. C.P.B. Exploration of virtually designed quinazoline derivatives targeting egfr kinases as anticancer agents : Docking, in-silico admet, drug-likeness, and dft study.Lett. Drug Des. Discov.202421
    [Google Scholar]
  36. ShindeS.S. PaduleK.B. SawantS.L. SarkateA.P. Systems approach for identifying drug targets by computational approaches.Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex DiseasesSingaporeSpringer202410.1007/978‑981‑99‑9462‑5_10
    [Google Scholar]
  37. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings.199723325
    [Google Scholar]
  38. IvanovićV. RančićM. ArsićB. PavlovićA. Lipinski’s rule of five, famous extensions and famous exceptions.Chemia Naissensis20203117118110.46793/ChemN3.1.171I
    [Google Scholar]
  39. AlamM.M. VermaG. MarellaA. ShaquiquzzamanM. AkhtarM. AliM.R. A review exploring biological activities of hydrazones.J. Pharm. Bioallied Sci.201462698010.4103/0975‑7406.12917024741273
    [Google Scholar]
  40. CheX. LiuQ. ZhangL. An accurate and universal protein-small molecule batch docking solution using Autodock Vina.Results in Engineering20231910133510.1016/j.rineng.2023.101335
    [Google Scholar]
  41. JiaY. YunC.H. ParkE. ErcanD. ManuiaM. JuarezJ. XuC. RheeK. ChenT. ZhangH. PalakurthiS. JangJ. LelaisG. DiDonatoM. BursulayaB. MichellysP.Y. EppleR. MarsiljeT.H. McNeillM. LuW. HarrisJ. BenderS. WongK.K. JänneP.A. EckM.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors.Nature2016534760512913210.1038/nature1796027251290
    [Google Scholar]
  42. RahatI. YadavP. SinghalA. FareedM. PurushothamanJ.R. AslamM. BalajiR. Patil-ShindeS. RizwanullahM. Polymer lipid hybrid nanoparticles for phytochemical delivery: Challenges, progress, and future prospects.Beilstein J. Nanotechnol.2024151473149710.3762/bjnano.15.11839600519
    [Google Scholar]
  43. FanJ. FuA. ZhangL. Progress in molecular docking.Quant. Biol.201972838910.1007/s40484‑019‑0172‑y
    [Google Scholar]
  44. ShindeS.S. SarkateA.P. RathodS.S. KilbileJ.T. ChaudhariS.Y. YadalaR. PawarS.C. WakteP.S. Synthesis, biological evaluation, and computational studies of thiazolyl hydrazone derivatives as triple mutant allosteric EGFR inhibitors.J. Chin. Chem. Soc.202471770672010.1002/jccs.202400084
    [Google Scholar]
  45. ShindeS. SarkateA. NirmalN SakhaleB. Medicinal applications, and chemical compositions of essential oils: Detailed perspectives.Recent Frontiers of PhytochemicalsUnited StatesElsevier2023
    [Google Scholar]
  46. ZhuangX. LuC. PBPK modeling and simulation in drug research and development.Acta Pharm. Sin. B20166543044010.1016/j.apsb.2016.04.00427909650
    [Google Scholar]
  47. LaouiA. PolyakovV.R. Web services as applications’ integration tool: QikProp case study.J. Comput. Chem.20113291944195110.1002/jcc.2177821455963
    [Google Scholar]
  48. ShindeS.S. KilbileJ.T. ThapaS. BiradarM.S. BhusariS.S. WakteP.S. Design, synthesis, in silico studies, and anticancer activity of novel nitrobenzene thiazolyl hydrazones against the EGFR.Russ. J. Bioorganic Chem.20245062483249810.1134/S1068162024060190
    [Google Scholar]
  49. ZakiM.E.A. Al-HussainS.A. Al-MutairiA.A. SamadA. GhoshA. ChaudhariS. KhataleP.N. AjmireP. JawarkarR.D. In-silico studies to recognize repurposing therapeutics toward arginase-I inhibitors as a potential onco-immunomodulators.Front. Pharmacol.202314112999710.3389/fphar.2023.1129997
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921374184250311061415
Loading
/content/journals/cppm/10.2174/0118756921374184250311061415
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): alkaloids; anticancer; DFT study; EGFR inhibitor; in silico studies; Zanthoxylum nitidum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test