Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Aims

To examine whether novel lead hypertension molecules can be used in the personalized treatment of hypertension.

Background/Introduction

Hypertension is a modifiable condition that affects over 1 billion adults worldwide. Maintaining a healthy blood pressure is vital for overall health, especially given that hypertension is a primary risk factor for developing cardiovascular conditions. However, some individuals have resistant hypertension, which may be due to variations in genetic expression, making standard hypertension treatments ineffective.

Objective

The integration of genetic data into the personalized optimization of novel hypertension drugs is demonstrated.

Method

This research created coding criteria for drug-gene recommendations based on the genomic profiles of ten pseudo-patients. The genomic data of these patients was created using chromosome and hypertension-implicated gene sequences from the NCBI National Library of Medicine database.

Results and Discussion

This study uses the proposed drug recommendation criteria to recommend novel hypertension lead molecules to each patient based on their gene expression profiles.

Conclusion

This study’s patient-centric drug prescription approach integrates patient gene expression data with drug-gene interaction data and recommends novel hypertension drugs most suitable for each patient. Variations in patient gene expression explain the diverse treatment responses inherent across hypertensive patients, thus necessitating a personalized approach to their drug prescription. Future studies can investigate the challenges of ethical, technological, and technical expertise that may affect the clinical implementation of personalized drug prescription recommendation systems.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921355914241203054023
2024-12-13
2025-09-03
Loading full text...

Full text loading...

References

  1. FlackJ.M. AdekolaB. Blood pressure and the new ACC/AHA hypertension guidelines.Trends Cardiovasc. Med.202030316016410.1016/j.tcm.2019.05.003 31521481
    [Google Scholar]
  2. MannanA. AkterK.M. AkterF. Association between comorbidity and health-related quality of life in a hypertensive population: A hospital-based study in Bangladesh.BMC Public Health202222118110.1186/s12889‑022‑12562‑w 35081905
    [Google Scholar]
  3. CunninghamP.N. ChapmanA.B. The future of pharmacogenetics in the treatment of hypertension.Pharmacogenomics201920312913210.2217/pgs‑2018‑0191 30808251
    [Google Scholar]
  4. ByrdJ.B. Personalized medicine and treatment approaches in hypertension: Current perspectives.Integr. Blood Press. Control20169596710.2147/IBPC.S74320 27103841
    [Google Scholar]
  5. RossierB.C. BochudM. DevuystO. The hypertension pandemic: An evolutionary perspective.Physiology (Bethesda)201732211210.1152/physiol.00026.2016
    [Google Scholar]
  6. PadmanabhanS. JoeB. Towards precision medicine for hypertension: A review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans.Physiol. Rev.20179741469152810.1152/physrev.00035.2016 28931564
    [Google Scholar]
  7. Oliveira-PaulaG.H. PereiraS.C. Tanus-SantosJ.E. LacchiniR. Pharmacogenomics and hypertension: Current insights.Pharm. Genomics Pers. Med.20191234135910.2147/PGPM.S230201
    [Google Scholar]
  8. ZhouB. Carrillo-LarcoR.M. DanaeiG. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants.Lancet20213981030495798010.1016/S0140‑6736(21)01330‑1 34450083
    [Google Scholar]
  9. VerbovenL. CaldersT. CallensS. A treatment recommender clinical decision support system for personalized medicine: Method development and proof-of-concept for drug resistant tuberculosis.BMC Med. Inform. Decis. Mak.20222215610.1186/s12911‑022‑01790‑0 35236355
    [Google Scholar]
  10. KeikhosrokianiP. BalasubramaniamK. IsomursuM. Drug recommendation system for healthcare professionals decision-making using opinion mining and machine learning.Digital Health and Wireless Solutions.Springer202422224110.1007/978‑3‑031‑59091‑7_15
    [Google Scholar]
  11. ZhuF. CuiL. XuY. QuZ. ShenZ. A survey of personalized medicine recommendation.Int J Crowd Sci202482778210.26599/IJCS.2023.9100013
    [Google Scholar]
  12. ManosroiW. WilliamsG.H. Genetics of human primary hypertension: Focus on hormonal mechanisms.Endocr. Rev.201940382585610.1210/er.2018‑00071
    [Google Scholar]
  13. LelongH. BlacherJ. BaudryJ. Individual and combined effects of dietary factors on risk of incident hypertension.Hypertension201770471272010.1161/HYPERTENSIONAHA.117.09622 28760943
    [Google Scholar]
  14. GaoK. ShiX. WangW. The life-course impact of smoking on hypertension, myocardial infarction and respiratory diseases.Sci. Rep.201771433010.1038/s41598‑017‑04552‑5 28659608
    [Google Scholar]
  15. FountainJ.H. KaurJ. LappinS.L. Physiology, Renin Angiotensin System.Treasure IslandStatPearls2023
    [Google Scholar]
  16. GrassiG. The sympathetic nervous system in hypertension: Roadmap update of a long journey.Am. J. Hypertens.202134121247125410.1093/ajh/hpab124 34355740
    [Google Scholar]
  17. Al-ShareaA. LeeM.K.S. WhillasA. Chronic sympathetic driven hypertension promotes atherosclerosis by enhancing hematopoiesis.Haematologica2019104345646710.3324/haematol.2018.192898 30361420
    [Google Scholar]
  18. DeLalioL.J. SvedA.F. StockerS.D. Sympathetic nervous system contributions to hypertension: Updates and therapeutic relevance.Can. J. Cardiol.202036571272010.1016/j.cjca.2020.03.003 32389344
    [Google Scholar]
  19. TurnerJ.M. KodaliR. Should angiotensin-converting enzyme inhibitors ever be used for the management of hypertension?Curr. Cardiol. Rep.20202299510.1007/s11886‑020‑01352‑8 32648000
    [Google Scholar]
  20. ZhengW. TianE. LiuZ. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective.Front. Pharmacol.20221396810410.3389/fphar.2022.968104 36386190
    [Google Scholar]
  21. MorelloG. SalomoneS. D’AgataV. ConfortiF.L. CavallaroS. From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis.Front. Neurosci.20201457775510.3389/fnins.2020.577755 33192262
    [Google Scholar]
  22. SeravalleG. GrassiG. Sympathetic nervous system and hypertension: New evidences.Auton. Neurosci.202223810295410.1016/j.autneu.2022.102954 35151003
    [Google Scholar]
  23. CalhounD.A. SchiffrinE.L. FlackJ.M. Resistant hypertension: An update.Am. J. Hypertens.20193211310.1093/ajh/hpy156 30407514
    [Google Scholar]
  24. MouraA.F. Moura-NetoJ.A. RodriguesC.I.S. Resistant hypertension: Prevalence and profile of patients followed in a university ambulatory.SAGE Open Med.202192050312121102089210.1177/20503121211020892 34178337
    [Google Scholar]
  25. KatsukunyaJ N SokoND NaidooJ Pharmacogenomics of hypertension in Africa: Paving the way for a pharmacogenetic based approach for the treatment of hypertension in Africans 2023; 2023: 9919677.10.1155/2023/9919677
  26. FravelM.A. ErnstM. Drug interactions with antihypertensives.Curr. Hypertens. Rep.20212331410.1007/s11906‑021‑01131‑y 33666764
    [Google Scholar]
  27. OhS.H. LeeS.J. ParkJ. Precision medicine for hypertension patients with type 2 diabetes via reinforcement learning.J. Pers. Med.20221218710.3390/jpm12010087 35055402
    [Google Scholar]
  28. OuH. LiuD. ZhaoG. GongC. LiY. ZhaoQ. Association between AT1 receptor gene polymorphism and left ventricular hypertrophy and arterial stiffness in essential hypertension patients: A prospective cohort study.BMC Cardiovasc. Disord.202222157110.1186/s12872‑022‑03024‑7 36577936
    [Google Scholar]
  29. ChenL. XiaoT. ChenL. XieS. DengM. WuD. The association of ADRB1 and CYP2D6 polymorphisms with antihypertensive effects and analysis of their contribution to hypertension risk.Am. J. Med. Sci.2018355323523910.1016/j.amjms.2017.11.002 29549925
    [Google Scholar]
  30. MasilelaC. PearceB. OngoleJ.J. AdeniyiO.V. BenjeddouM. Genomic association of single nucleotide polymorphisms with blood pressure response to hydrochlorothiazide among South African adults with hypertension.J. Pers. Med.202010426710.3390/jpm10040267 33316892
    [Google Scholar]
  31. Rodriguez-IturbeB. JohnsonR.J. Genetic polymorphisms in hypertension: Are we missing the immune connection?Am. J. Hypertens.201932211312210.1093/ajh/hpy168 30418477
    [Google Scholar]
  32. PorcherR. TranV.T. BlacherJ. RavaudP. Potential of stratified medicine for high blood pressure management.Hypertension20197461420142710.1161/HYPERTENSIONAHA.119.13749
    [Google Scholar]
  33. MelvilleS. ByrdJ.B. Personalized medicine and the treatment of hypertension.Curr. Hypertens. Rep.20192121310.1007/s11906‑019‑0921‑3 30747306
    [Google Scholar]
  34. LuizonM.R. PereiraD.A. SandrimV.C. Pharmacogenomics of hypertension and preeclampsia: Focus on gene–gene interactions.Front. Pharmacol.20189FEB16810.3389/fphar.2018.00168 29541029
    [Google Scholar]
  35. MatsuyamaK. KuriharaC. CrawleyF.P. Kerpel-FroniusS. Utilization of genetic information for medicines development and equitable benefit sharing.Front. Genet.202314June108586410.3389/fgene.2023.1085864 37388927
    [Google Scholar]
  36. VerbistB. KlambauerG. VervoortL. Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.Drug Discov. Today201520550551310.1016/j.drudis.2014.12.014 25582842
    [Google Scholar]
  37. TommelJ. KenisD. LambrechtsN. Personal genomes in practice: Exploring citizen and healthcare professionals’ perspectives on personalized genomic medicine and personal health data spaces using a mixed-methods design.Genes (Basel)202314478610.3390/genes14040786 37107544
    [Google Scholar]
  38. WanZ. HazelJ.W. ClaytonE.W. VorobeychikY. KantarciogluM. MalinB.A. Sociotechnical safeguards for genomic data privacy.Nat. Rev. Genet.202223742944510.1038/s41576‑022‑00455‑y 35246669
    [Google Scholar]
  39. LehasaO.M. Chude-OkonkwoU.A.K. Dataset for discovering new hypertension small molecules using machine learning-aided computational fragment-based design.Data Brief20245511067710.1016/j.dib.2024.110677 39071972
    [Google Scholar]
  40. Chude-OkonkwoU.A.K. LehasaO. Integrated framework of fragment-based method and generative model for lead drug molecules discovery.2024ssrn10.2139/ssrn.4801900
    [Google Scholar]
  41. ShoshiE.Y.B.A. HofestädtR. ZolotarevaO. GenCoNet: A graph database for the analysis of comorbidities by gene networks.J. Integr. Bioinform.201815410.1515/jib‑2018‑0049
    [Google Scholar]
  42. FreshourS.L. KiwalaS. CottoK.C. Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts.Nucleic Acids Res.202149D1D1144D115110.1093/nar/gkaa1084 33237278
    [Google Scholar]
  43. Genehttps://www.ncbi.nlm.nih.gov/gene/
  44. BonomiL. HuangY. Ohno-MachadoL. Privacy challenges and research opportunities for genomic data sharing.Nat. Genet.202052764665410.1038/s41588‑020‑0651‑0 32601475
    [Google Scholar]
  45. Open-source cheminformatics.https://www.rdkit.org
  46. RyszJ. FranczykB. Rysz-GórzyńskaM. Gluba-BrzózkaA. Pharmacogenomics of hypertension treatment.Int. J. Mol. Sci.20202113470910.3390/ijms21134709 32630286
    [Google Scholar]
  47. LuH. CassisL.A. KooiC.W.V. DaughertyA. Structure and functions of angiotensinogen.Hypertens. Res.201639749250010.1038/hr.2016.17 26888118
    [Google Scholar]
  48. BorghiC. CiceroA.F. AgnolettiD. FioriniG. Pathophysiology of cough with angiotensin-converting enzyme inhibitors: How to explain within-class differences?Eur. J. Intern. Med.2023110101510.1016/j.ejim.2023.01.005
    [Google Scholar]
  49. TirunilaiP. ManneM. GundeS. KondreddyR.K.R. ThurlapatiN. Association of IFN-g+874(T/A) polymorphism with female patients of age-related cataracts.Oman J. Ophthalmol.201251323610.4103/0974‑620X.94764 22557874
    [Google Scholar]
  50. AncionA. TridettiJ. Nguyen TrungM.L. OuryC. LancellottiP. A review of the role of bradykinin and nitric oxide in the cardioprotective action of angiotensin-converting enzyme inhibitors: Focus on perindopril.Cardiol. Ther.20198217919110.1007/s40119‑019‑00150‑w 31578675
    [Google Scholar]
  51. MesserliF.H. BangaloreS. BavishiC. RimoldiS.F. Angiotensin-converting enzyme inhibitors in hypertension.J. Am. Coll. Cardiol.201871131474148210.1016/j.jacc.2018.01.058 29598869
    [Google Scholar]
  52. MarkanU. PasupuletiS. PollardC.M. PerezA. AuksziB. LymperopoulosA. The place of ARBs in heart failure therapy: Is aldosterone suppression the key?Ther. Adv. Cardiovasc. Dis.2019136175394471986813410.1177/1753944719868134 31401939
    [Google Scholar]
  53. AlshahraniS. Renin–angiotensin–aldosterone pathway modulators in chronic kidney disease: A comparative review.Front. Pharmacol.202314February110106810.3389/fphar.2023.1101068 36860293
    [Google Scholar]
  54. YangR. LuoZ. LiuY. Drug interactions with angiotensin receptor blockers: Role of human cytochromes P450.Curr. Drug Metab.201617768169110.2174/1389200217666160524143843 27216792
    [Google Scholar]
  55. DuanL. BaiY. LiM. LiH. LiY. LiuH. Increased risk of aspirin-induced gastric mucosal erosion in elderly Chinese men harboring SLCO1B1*1b/*1b while using aspirin and an ACEI or ARB concomitantly.BMC Med. Genet.201920118310.1186/s12881‑019‑0918‑4 31727004
    [Google Scholar]
  56. ChenH. EngkvistO. WangY. OlivecronaM. BlaschkeT. The rise of deep learning in drug discovery.Drug Discov. Today20182361241125010.1016/j.drudis.2018.01.039
    [Google Scholar]
  57. YamadaY. NakamuraH. TsujiguchiH. Relationships among the β3-adrenargic receptor gene Trp64Arg polymorphism, hypertension, and insulin resistance in a Japanese population.PLoS One2021168e025544410.1371/journal.pone.0255444 34347822
    [Google Scholar]
  58. MárquezM.F. FragosoJ.M. Pérez-PérezD. Polymorphisms in B-adrenergic receptors are associated with increased risk to have a positive head-up tilt table test in patients with vasovagal syncope.Rev. Invest. Clin.201971212413210.24875/RIC.18002734 31056593
    [Google Scholar]
  59. ShengJ. LiF. WongS.T.C. Optimal drug prediction from personal genomics profiles.IEEE J. Biomed. Health Inform.20151941264127010.1109/JBHI.2015.2412522 25781964
    [Google Scholar]
  60. SafizadehH. SimpkinsS.W. NelsonJ. Improving Measures of chemical structural similarity using machine learning on chemical–genetic interactions.J. Chem. Inf. Model.20216194156417210.1021/acs.jcim.0c00993 34318674
    [Google Scholar]
  61. GiderV. BudakC. Instruction of molecular structure similarity and scaffolds of drugs under investigation in ebola virus treatment by atom-pair and graph network: A combination of favipiravir and molnupiravir.Comput. Biol. Chem.202210110777810.1016/j.compbiolchem.2022.107778 36279832
    [Google Scholar]
  62. GandiniE. MarcouG. BonacheraF. VarnekA. PieracciniS. SironiM. Molecular similarity perception based on machine-learning models.Int. J. Mol. Sci.20222311611410.3390/ijms23116114 35682792
    [Google Scholar]
  63. SzilágyiK. FlachnerB. HajdúI. Rapid identification of potential drug candidates from multi-million compounds repositories. Combination of 2D similarity search with 3D ligand/structure based methods and in vitro screening.Molecules20212618559310.3390/molecules26185593 34577064
    [Google Scholar]
  64. MellorC.L. Marchese RobinsonR.L. BenigniR. Molecular fingerprint-derived similarity measures for toxicological read-across: Recommendations for optimal use.Regul. Toxicol. Pharmacol.201910112113410.1016/j.yrtph.2018.11.002
    [Google Scholar]
  65. O’HaganS. KellD.B. Consensus rank orderings of molecular fingerprints illustrate the most genuine similarities between marketed drugs and small endogenous human metabolites, but highlight exogenous natural products as the most important ‘natural’ drug transporter substrates.ADMET DMPK2017528510.5599/admet.5.2.376
    [Google Scholar]
  66. HassanM. AwanF.M. NazA. Innovations in genomics and big data analytics for personalized medicine and health care: A review.Int. J. Mol. Sci.2022239464510.3390/ijms23094645 35563034
    [Google Scholar]
  67. YueJ.X. LitiG. simuG: A general-purpose genome simulator.Bioinformatics201935214442444410.1093/bioinformatics/btz424 31116378
    [Google Scholar]
  68. DimitromanolakisA. XuJ. KrolA. BriollaisL. sim1000G: A user-friendly genetic variant simulator in R for unrelated individuals and family based designs.BMC Bioinformatics20192012610.1186/s12859‑019‑2611‑1 30646839
    [Google Scholar]
  69. JuanL. WangY. JiangJ. YangQ. JiangQ. WangY. PGsim: A comprehensive and highly customizable personal genome simulator.Front. Bioeng. Biotechnol.20208January2810.3389/fbioe.2020.00028 32047747
    [Google Scholar]
  70. National Research Council.Mapping and Sequencing the Human Genome.Washington, D.C.National Academies Press198810.17226/1097
    [Google Scholar]
  71. DanilovS.M. AdzhubeiI.A. KozuchA.J. Carriers of heterozygous loss-of-function ACE mutations are at risk for alzheimer’s disease.Biomedicines202412116210.3390/biomedicines12010162 38255267
    [Google Scholar]
  72. MinikelE.V. KarczewskiK.J. MartinH.C. Evaluating drug targets through human loss-of-function genetic variation.Nature2020581780945946410.1038/s41586‑020‑2267‑z 32461653
    [Google Scholar]
  73. PrelichG. Gene overexpression: Uses, mechanisms, and interpretation.Genetics2012190384185410.1534/genetics.111.136911 22419077
    [Google Scholar]
  74. SégalatL. Loss-of-function genetic diseases and the concept of pharmaceutical targets.Orphanet J. Rare Dis.2007213010.1186/1750‑1172‑2‑30 17674486
    [Google Scholar]
  75. MabhidaS.E. MashatolaL. KaurM. Hypertension in African populations: Review and computational insights.Genes (Basel)202112453210.3390/genes12040532 33917487
    [Google Scholar]
  76. QIAGEN. QIAGEN.https://www.qiagen.com/us
/content/journals/cppm/10.2174/0118756921355914241203054023
Loading
/content/journals/cppm/10.2174/0118756921355914241203054023
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test