Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

The efficiency of a photovoltaic cell is fundamentally determined by its maximum power output, which is closely related to the fill factor. The fill factor, which defines the shape of the I-V characteristics of a solar cell, is influenced by various environmental and internal parameters. Among these, parasitic series and shunt resistances (RSH) are two major factors that significantly affect the fill factor.

Methods

Numerical analysis was conducted to investigate the impact of parasitic series and shunt resistances on the I-V characteristics of a solar cell. The analysis focused on how these resistances influence the fill factor. For reference, the highest recorded efficiency and other corresponding parameters of a GaAs (Multicrystalline) solar cell were used.

Results

The results showed that as the value of RSH decreases, the I-V curve flattens, leading to a considerable decrease in the fill factor.

Discussion

The observed flattening of the I-V curve and the subsequent decrease in the fill factor highlight the critical role of parasitic resistances in determining the efficiency of solar cells. Understanding and mitigating these parasitic effects can lead to significant improvements in the performance of GaAs solar cells.

Conclusion

The findings from this numerical analysis provide valuable insights into the impact of parasitic resistances on the efficiency of GaAs solar cells. These results are expected to guide future implementations aimed at enhancing the efficiency of GaAs solar cells.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348374213250116070814
2025-01-22
2025-09-28
Loading full text...

Full text loading...

References

  1. BiswasR. Hybrid solar cells: A step closer to smart life. In: J Phys. Optics Sci2022431210.47363/JPSOS/2022(4)165
    [Google Scholar]
  2. HuangX. HanS. HuangW. LiuX. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters.Chem. Soc. Rev.201342117320110.1039/C2CS35288E 23072924
    [Google Scholar]
  3. KabirE. KumarP. KumarS. AdelodunA.A. KimK.H. Solar energy: Potential and future prospects.Renew. Sustain. Energy Rev.20188289490010.1016/j.rser.2017.09.094
    [Google Scholar]
  4. DittrichT. Basic characteristics and characterization of solar cells.GermanyHelmholtz Center Berlin for Materials and Energy201834310.1142/9781786344496_0001
    [Google Scholar]
  5. GreenM. DunlopE. Hohl‐EbingerJ. YoshitaM. KopidakisN. HaoX. Solar cell efficiency tables (version 57).Prog. Photovolt. Res. Appl.202029131510.1002/pip.3371
    [Google Scholar]
  6. RezkH. FathyA. AlyM. A robust photovoltaic array reconfiguration strategy based on coyote optimization algorithm for enhancing the extracted power under partial shadow condition.Energy Rep.2021710912410.1016/j.egyr.2020.11.035
    [Google Scholar]
  7. CherukuriS.K. BalachandranP.K. KanigantiK.R. BuddiM.K. ButtiD. DevakirubakaranS. BabuT.S. AlhelouH.H. Power enhancement in partial shaded photovoltaic system using spiral pattern array configuration scheme.IEEE Access2021912310312311610.1109/ACCESS.2021.3109248
    [Google Scholar]
  8. SenguptaS. SenguptaS. ChandaC.K. SahaH. Modeling the effect of relative humidity and precipitation on photovoltaic dust accumulation processes.IEEE J. Photovolt.2021991910.1109/JPHOTOV.2021.3074071
    [Google Scholar]
  9. LiptákR. BodnárI. Simulation of fault detection in photovoltaic arrays.Analecta Technica Szegedinensia2021152314010.14232/analecta.2021.2.31‑40
    [Google Scholar]
  10. SaranchimegS. NairN.K.C. A novel framework for integration analysis of large-scale photovoltaic plants into weak grids.Appl. Energy202128211614110.1016/j.apenergy.2020.116141
    [Google Scholar]
  11. KrohnJ. RudenP. Parasitic resistance effects of split-spectrum solar cell performance.2010https://hdl.handle.net/11299/101888
    [Google Scholar]
  12. KarS. BanerjeeS. ChandaC.K. Effect of parasitic resistances on CdTe solar cell and validation with datasheet of FS-6450A in matlab/simulink.J. Phys. Conf. Ser.20212070101210610.1088/1742‑6596/2070/1/012106
    [Google Scholar]
  13. Available from: https://conservancy.umn.edu/server/api/core/bitstreams/9a35d554-4a5b-4af4-9c74-e87fca26b85c/content(Accessed on 26 th Dec, 2024)
  14. MesquitaI. AndradeL. MendesA. Effect of relative humidity during the preparation of perovskite solar cells: Performance and stability Solar Energy202019947448310.1016/j.solener.2020.02.052
    [Google Scholar]
  15. SohaniA. ShahverdianM.H. SayyaadiH. GarciaD.A. Impact of absolute and relative humidity on the performance of mono and poly crystalline silicon photovoltaics; Applying artificial neural network.J. Clean. Prod.202027612301610.1016/j.jclepro.2020.123016
    [Google Scholar]
  16. AliH. KhanH.A. Analysis on inverter selection for domestic rooftop solar photovoltaic system deployment.Int. Trans. Electr. Energy Syst.2020305e1235110.1002/2050‑7038.12351
    [Google Scholar]
  17. KonyuM. KetjoyN. SirisamphanwongC. Effect of dust on the solar spectrum and electricity generation of a photovoltaic module.IET Renew. Power Gener.202014142759276410.1049/iet‑rpg.2020.0456
    [Google Scholar]
  18. WangX. KhanM.R. GrayJ.L. AlamM.A. LundstromM.S. Design of gaas solar cells operating close to the shockley–queisser limit.IEEE J. Photovolt.20133273774410.1109/JPHOTOV.2013.2241594
    [Google Scholar]
  19. LiQ. ShenK. YangR. ZhaoY. LuS. WangR. DongJ. WangD. Comparative study of GaAs and CdTe solar cell performance under low-intensity light irradiance.Sol. Energy201715715721622610.1016/j.solener.2017.08.023
    [Google Scholar]
  20. D’RozarioJ.R. PollyS.J. NelsonG.T. HubbardS.M. Thin gallium arsenide solar cells with maskless back surface reflectors.IEEE J. Photovolt.20201061681168810.1109/JPHOTOV.2020.3019950
    [Google Scholar]
  21. DalalV.L. MooreA.R. Design considerations for high-intensity solar cells.J. Appl. Phys.19774831244125110.1063/1.323766
    [Google Scholar]
  22. KhanA.D. KhanA.D. Optimization of highly efficient GaAs–silicon hybrid solar cell.Appl. Phys., A Mater. Sci. Process.20181241285110.1007/s00339‑018‑2279‑9
    [Google Scholar]
  23. GruginskieN. CappellutiF. BauhuisG. TibaldiA. GilibertiG. MulderP. VliegE. SchermerJ. Limiting mechanisms for photon recycling in thin‐film GaAs solar cells.Prog. Photovolt. Res. Appl.202129337939010.1002/pip.3378
    [Google Scholar]
  24. OutesC. FernándezE.F. SeoaneN. AlmonacidF. García-LoureiroA.J. Dependence of the vertical‐tunnel‐junction GaAs solar cell on concentration and temperature.IET Renew. Power Gener.20221681577158810.1049/rpg2.12456
    [Google Scholar]
  25. BeemkumarN. HarikrishnanS. AliH.M. A review on factors influencing the mismatch losses in solar photovoltaic system.Int. J. Photoenergy2022202212986004
    [Google Scholar]
  26. ArulanandamM.K. SteinerM.A. TervoE.J. YoungA.R. KuritzkyL.Y. PerlE.E. NarayanT.C. KayesB.M. BriggsJ.A. KingR.R. GaAs thermophotovoltaic patterned dielectric back contact devices with improved sub-bandgap reflectance.Sol. Energy Mater. Sol. Cells202223811154511154510.1016/j.solmat.2021.111545
    [Google Scholar]
  27. DíazS.R. A generalized theoretical approach for solar cells fill factors by using shockley diode model and lambert w-function: A review comparing theory and experimental data.Physica B202262441342741342710.1016/j.physb.2021.413427
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348374213250116070814
Loading
/content/journals/cphs/10.2174/0127723348374213250116070814
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test