Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

This research puts forward a cost-efficient high-efficiency plasmonic photonic crystal sensor for biomedical applications that functions in the near-infrared range.

Methods

The sensor design is composed of multiple two-dimensional photonic crystal layers stacked in the order of SiO foundational layer, graphite layer, MgF waveguide, and finally a gold ring over the top. The graphite layer is deposited for optimum sensing and high absorption peaks and is state-of-the-art in this research work. Metal deposition of the gold layer is used for harnessing plasmonic properties that play a vital role in detecting small refractive index changes.

Results

The sensor design is investigated for a range of coupling incident angles and it is found that the sensor is responsive to a broad range of angles , 0o to 80o. The proposed sensor has given output peak values of more than 90% in the whole range of incident source angles.

Conclusion

Finally, water and 25% concentration of glucose samples are used for investigating sensor performance and it is noted that the sensor’s sensitivity reaches as high as 1675 nm/RIU-1 with a Figure of Merit (FOM) of 20.94 RIU-1. The sensor’s numerical simulations have been performed using Finite Element Method (FEM) and Finite Difference Time Domain (FDTD).

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348340085241218173241
2024-12-27
2025-09-04
Loading full text...

Full text loading...

References

  1. McGurnA. Plasmonics. In: Nanophotonics;Springer Series in Optical Sciences2018213
    [Google Scholar]
  2. AchantaV.G. Surface waves at metal-dielectric interfaces: Material science perspective.Reviews in Physics2020510004110.1016/j.revip.2020.100041
    [Google Scholar]
  3. ZhouH. LiX. WangL. LiangY. JialadingA. WangZ. ZhangJ. Application of SERS quantitative analysis method in food safety detection.Rev. Anal. Chem.202140117318610.1515/revac‑2021‑0132
    [Google Scholar]
  4. SarkalehA. LahijaniB. SaberkariH. EsmaeeliA. Optical ring resonators: A platform for biological sensing applications.J. Med. Signals Sens.20177318519110.4103/jmss.JMSS_9_1728840120
    [Google Scholar]
  5. NareshV. LeeN. A review on biosensors and recent development of nanostructured materials-enabled biosensors.Sensors (Basel)2021214110910.3390/s2104110933562639
    [Google Scholar]
  6. ChengY. LuoH. ChenF. GongR. Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency.OSA Continuum201927211310.1364/OSAC.2.002113
    [Google Scholar]
  7. YaoY. ZhouJ. LiuZ. LiuX. FuG. LiuG. Refractory materials and plasmonics based perfect absorbers.Nanotechnology2021321313200210.1088/1361‑6528/abd27533302265
    [Google Scholar]
  8. WatanabeT. YuM.-J. LanH.-Y. HaraguchiM. LuY.-J. Visible plasmonic perfect absorber based on titanium nitride metamaterial.Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII202010.1117/12.2568276
    [Google Scholar]
  9. ZhaoD. LinZ. ZhuW. LezecH.J. XuT. AgrawalA. ZhangC. HuangK. Recent advances in ultraviolet nanophotonics: From plasmonics and metamaterials to metasurfaces.Nanophotonics20211092283230810.1515/nanoph‑2021‑0083
    [Google Scholar]
  10. TongA. SorrellT.C. BlackA.J. CaillaudC. ChrzanowskiW. LiE. Martinez-MartinD. McEwanA. WangR. MotionA. BedoyaA.C. HuangJ. AziziL. EggletonB.J. Research priorities for COVID-19 sensor technology.Nat. Biotechnol.202139214414710.1038/s41587‑021‑00816‑833462510
    [Google Scholar]
  11. GreenwoodN.N. EarnshawA. Chemistry of the elements.2nd edOxfordButterworth-Heinemann20081181
    [Google Scholar]
  12. FengD.D. Biomedical information technology.2nd edLondonUnited Kingdom Academic Press, Elsevier2020
    [Google Scholar]
  13. NejatM. NozhatN. Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region.Sci. Rep.2020101635710.1038/s41598‑020‑63459‑w32286460
    [Google Scholar]
  14. ZhuY. ZhangH. LiD. ZhangZ. ZhangS. YiJ. WangW. Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing.Opt. Express20182679148915410.1364/OE.26.00914829715870
    [Google Scholar]
  15. ZafarR. NawazS. SinghG. d’AlessandroA. SalimM. Plasmonics-based refractive index sensor for detection of hemoglobin concentration.IEEE Sens. J.201818114372437710.1109/JSEN.2018.2826040
    [Google Scholar]
  16. KazanskiyN.L. ButtM.A. KhoninaS.N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface.Sensors (Basel)202121237810.3390/s2102037833430512
    [Google Scholar]
  17. KhoninaS.N. ButtM.A. KazanskiyN.L. Numerical investigation of metasurface narrowband perfect absorber and a plasmonic sensor for a near-infrared wavelength range.J. Opt.202123606510210.1088/2040‑8986/abf890
    [Google Scholar]
  18. CST Studio Suite 3D EM simulation and analysis software Available from: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
  19. "FDTD Simulation software for EM analysis,”3D EM Sim software based on FDTD. Available from: https://www.flexcompute.com/tidy3d/solver/
    [Google Scholar]
  20. GharbiT. BarchiesiD. KessentiniS. MaalejR. Fitting optical properties of metals by Drude-Lorentz and partial-fraction models in the [0.5;6] eV range.Opt. Mater. Express2020105112910.1364/OME.388060
    [Google Scholar]
  21. WangG. YangH. LiangJ. ChenQ. Preparation Methods and Application of Silicon Oxide Films2014https://www.atlantis-press.com/proceedings/meic-14/1507410.2991/meic‑14.2014.108
    [Google Scholar]
  22. E–LINE|RAITH1502024 Available from: https://raith.com/products/multifunctional-ebl/(accessed Oct. 13, 2024).
  23. KrishnanA. HuangN. WuS.H. MartínezL.J. PovinelliM.L. Enhanced and selective optical trapping in a slot-graphite photonic crystal.Opt. Express20162420232712327910.1364/OE.24.02327127828391
    [Google Scholar]
  24. SugaiY. SugataH. SugawaraT. MuhammadS. HämäläinenJ. LamminmäkiN. KostamoJ. Optical, chemical and coverage properties of magnesium fluoride formed by atomic layer deposition.Opt. Rev.202431224224610.1007/s10043‑024‑00867‑7
    [Google Scholar]
  25. ChenY. HungS.F. LoW.K. ChenY. ShenY. KafendaK. SuJ. XiaK. YangS. A universal method for depositing patterned materials in situ.Nat. Commun.2020111533410.1038/s41467‑020‑19210‑033087744
    [Google Scholar]
  26. ShawravM.M. TausP. WanzenboeckH.D. SchinnerlM. Stöger-PollachM. SchwarzS. Steiger-ThirsfeldA. BertagnolliE. Highly conductive and pure gold nanostructures grown by electron beam induced deposition.Sci. Rep.2016613400310.1038/srep3400327666531
    [Google Scholar]
  27. RehmanA. KhanY. AhmedU. IrfanM. AmirzadaM.R. ButtM.A. A comparative study of the photonic crystals-based cavities and usage in all-optical-amplification phenomenon.Photon. Nanostructures20246110129810129810.1016/j.photonics.2024.101298
    [Google Scholar]
  28. BiessikirskiA. BarańskiK. PytlikM. KuterasińskiŁ. BiegańskaJ. SłowińskiK. Application of silicon dioxide as the inert component or oxide component enhancer in ANFO.Energies2021148215210.3390/en14082152
    [Google Scholar]
  29. KazanskiyN.L. KhoninaS.N. ButtM.A. Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application.Sensors (Basel)20202012341610.3390/s2012341632560484
    [Google Scholar]
  30. WrightS.F. ZadrazilI. MarkidesC.N. A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows.Exp. Fluids201758910810.1007/s00348‑017‑2386‑y
    [Google Scholar]
  31. SarapukdeeP. SpennerC. SchulzD. PalzerS. Optimizing stability and performance of silver-based grating structures for surface plasmon resonance sensors.Sensors (Basel)202323156743674310.3390/s2315674337571527
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348340085241218173241
Loading
/content/journals/cphs/10.2174/0127723348340085241218173241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test