Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

A model of quantum gravity unrelated to general relativity is described. The main postulate of the model is the assumption of the existence of a background of superstrongly interacting gravitons. To describe the interaction of a graviton with any particle during their collision, a new constant is introduced.

Methods

It is shown that screening of the background of single gravitons by a pair of bodies leads to approximately equal attractive and repulsive forces between the bodies. Pairing of a part of the background gravitons provided that the pairs are destroyed as a result of a collision with a body, yields an attractive force twice as great as the repulsive force, and gravity arises as an effect of background screening.

Results and Discussion

Newton’s constant has been calculated in the model as a function of background temperature, which allows the value of the new constant to be estimated. This model is free from divergences, unlike quantum gravity models based on general relativity, due to the specific shape of the Planck spectrum of the graviton background. A theoretical estimate of the Hubble constant, depending on the new constant, is also obtained.

Conclusion

An important feature of the model is the necessity of an “atomic” structure of matter, which leads as a side effect to the prohibition of the existence of black holes that do not have such a structure. Small additional effects of the model, caused by the interaction of photons with gravitons, may have great significance for cosmology.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348373429250512104534
2025-05-15
2025-09-28
Loading full text...

Full text loading...

References

  1. RovelliC. Notes for a brief history of quantum gravity.Proceedings, 9th Marcel Grossmann Meeting, MG'9.Rome, Italy, July 2-8, 2000. Pts. A-C, pp. 742-768
    [Google Scholar]
  2. CarlipS. Quantum gravity: A progress report.Rep. Prog. Phys.200164888594210.1088/0034‑4885/64/8/301
    [Google Scholar]
  3. BubuianuL. SingletonD. VacaruS.I. VelievE.V. Nonassociative geometric and quantum information flows and R-flux deformations of wormhole solutions in string gravity.Fortschr. Phys.2023230021210.1002/prop.202300212
    [Google Scholar]
  4. Ben AchourJ. BenedettiD. BojowaldM. Quantum gravity, hydrodynamics and emergent cosmology: A collection of perspectives.Gen. Relativ. Gravit.202557210.1007/s10714‑024‑03335‑4
    [Google Scholar]
  5. CrowellL. Stretched horizon as a quantum gravity beam splitter.Front. Phys.20221073419910.3389/fphy.2022.734199
    [Google Scholar]
  6. KimuraY. Black hole graviton and quantum gravity.Phys. Scr.202499404502410.1088/1402‑4896/ad338a
    [Google Scholar]
  7. KlingmanE.E. The origin of quarks in quantum gravity.J. Mod. Phys.20241581229124510.4236/jmp.2024.158050
    [Google Scholar]
  8. IvanovM.A. Screening the graviton background, graviton pairing, and Newtonian gravity.arXiv:gr-qc/02070062006
    [Google Scholar]
  9. IvanovM.A. MooreD.C. Gravitons as super-strong interacting particles, and low-energy quantum gravity.Focus on Quantum Gravity Research.Nova ScienceNew York200689120
    [Google Scholar]
  10. IvanovM.A. Selected papers on low-energy quantum gravity.2018Available from: ivanovma.narod.ru/selected-papers- Ivanov2018.pdf
  11. FeynmanR. The character of physical law.Cox and Wyman Ltd.London1965
    [Google Scholar]
  12. IvanovM.A. Possible manifestations of the graviton background.Gen.Rel.Grav200335939940
    [Google Scholar]
  13. FreedmanW.L. MadoreB.F. GibsonB.K. FerrareseL. KelsonD.D. SakaiS. MouldJ.R. KennicuttR.C.Jr FordH.C. GrahamJ.A. HuchraJ.P. HughesS.M.G. IllingworthG.D. MacriL.M. StetsonP.B. Final results from the hubble space telescope key project to measure the hubble constant.Astrophys. J.20015531477210.1086/320638
    [Google Scholar]
  14. Planck Collaboration: AghanimN. AkramiY. AshdownM. AumontJ. BaccigalupiC. BallardiniM. BandayA.J. BarreiroR.B. BartoloN. BasakS. BattyeR. BenabedK. BernardJ-P. BersanelliM. BielewiczP. BockJ.J. BondJ.R. BorrillJ. BouchetF.R. BoulangerF. BucherM. BuriganaC. ButlerR.C. CalabreseE. CardosoJ-F. CarronJ. ChallinorA. ChiangH.C. ChlubaJ. ColomboL.P.L. CombetC. ContrerasD. CrillB.P. CuttaiaF. de BernardisP. de ZottiG. DelabrouilleJ. DelouisJ-M. Di ValentinoE. DiegoJ.M. DoréO. DouspisM. DucoutA. DupacX. DusiniS. EfstathiouG. ElsnerF. EnßlinT.A. EriksenH.K. FantayeY. FarhangM. FergussonJ. Fernandez-CobosR. FinelliF. ForastieriF. FrailisM. FraisseA.A. FranceschiE. FrolovA. GaleottaS. GalliS. GangaK. Génova-SantosR.T. GerbinoM. GhoshT. González-NuevoJ. GórskiK.M. GrattonS. GruppusoA. GudmundssonJ.E. HamannJ. HandleyW. HansenF.K. HerranzD. HildebrandtS.R. HivonE. HuangZ. JaffeA.H. JonesW.C. KarakciA. KeihänenE. KeskitaloR. KiiveriK. KimJ. KisnerT.S. KnoxL. KrachmalnicoffN. KunzM. Kurki-SuonioH. LagacheG. LamarreJ-M. LasenbyA. LattanziM. LawrenceC.R. Le JeuneM. LemosP. LesgourguesJ. LevrierF. LewisA. LiguoriM. LiljeP.B. LilleyM. LindholmV. López-CaniegoM. LubinP.M. MaY-Z. Macías-PérezJ.F. MaggioG. MainoD. MandolesiN. MangilliA. Marcos-CaballeroA. MarisM. MartinP.G. MartinelliM. Martínez-GonzálezE. MatarreseS. MauriN. McEwenJ.D. MeinholdP.R. MelchiorriA. MennellaA. MigliaccioM. MilleaM. MitraS. Miville-DeschênesM-A. MolinariD. MontierL. MorganteG. MossA. NatoliP. Nørgaard-NielsenH.U. PaganoL. PaolettiD. PartridgeB. PatanchonG. PeirisH.V. PerrottaF. PettorinoV. PiacentiniF. PolastriL. PolentaG. PugetJ-L. RachenJ.P. ReineckeM. RemazeillesM. RenziA. RochaG. RossetC. RoudierG. Rubiño-MartínJ.A. Ruiz-GranadosB. SalvatiL. SandriM. SavelainenM. ScottD. ShellardE.P.S. SirignanoC. SirriG. SpencerL.D. SunyaevR. Suur-UskiA-S. TauberJ.A. TavagnaccoD. TentiM. ToffolattiL. TomasiM. TrombettiT. ValenzianoL. ValiviitaJ. Van TentB. VibertL. VielvaP. VillaF. VittorioN. WandeltB.D. WehusI.K. WhiteM. WhiteS.D.M. ZaccheiA. ZoncaA. Planck 2018 results.Astron. Astrophys.2020641A610.1051/0004‑6361/201833910
    [Google Scholar]
  15. TristramM. BandayA.J. DouspisM. GarridoX. GórskiK.M. Henrot-VersilléS. HergtL.T. IlićS. KeskitaloR. LagacheG. LawrenceC.R. PartridgeB. ScottD. Cosmological parameters derived from the final Planck data release (PR4).Astron. Astrophys.2024682A3710.1051/0004‑6361/202348015
    [Google Scholar]
  16. WillickJ.A. BatraP. A determination of the hubble constant from cepheid distances and a model of the local peculiar velocity field.Astrophys. J.2001548256458410.1086/319005
    [Google Scholar]
  17. RiessA.G. MacriL. CasertanoS. LampeitlH. FergusonH.C. FilippenkoA.V. JhaS.W. LiW. ChornockR. A 3% solution: Determination of the Hubble constantwith the Hubble constant with the hubble space telescope and wide field camera 3.Astrophys. J.2011730211910.1088/0004‑637X/730/2/119
    [Google Scholar]
  18. AbdallaE. AbellánG.F. AboubrahimA. AgnelloA. AkarsuÖ. AkramiY. AlestasG. AloniD. AmendolaL. AnchordoquiL.A. AndersonR.I. ArendseN. AsgariM. BallardiniM. BargerV. BasilakosS. BatistaR.C. BattistelliE.S. BattyeR. BenettiM. BenistyD. BerlinA. de BernardisP. BertiE. BidenkoB. BirrerS. BlakesleeJ.P. BoddyK.K. BomC.R. BonillaA. BorghiN. BouchetF.R. BragliaM. BuchertT. Buckley-GeerE. CalabreseE. CaldwellR.R. CamarenaD. CapozzielloS. CasertanoS. ChenG.C-F. ChlubaJ. ChenA. ChenH-Y. ChudaykinA. CicoliM. CopiC.J. CourbinF. Cyr-RacineF-Y. CzernyB. DainottiM. D’AmicoG. DavisA-C. de Cruz PérezJ. de HaroJ. DelabrouilleJ. DentonP.B. DhawanS. DienesK.R. Di ValentinoE. DuP. EckertD. Escamilla-RiveraC. FertéA. FinelliF. FosalbaP. FreedmanW.L. FruscianteN. GaztañagaE. GiarèW. GiusarmaE. Gómez-ValentA. HandleyW. HarrisonI. HartL. HazraD.K. HeavensA. HeinesenA. HildebrandtH. HillJ.C. HoggN.B. HolzD.E. HooperD.C. HosseininejadN. HutererD. IshakM. IvanovM.M. JaffeA.H. JangI.S. JedamzikK. JimenezR. JosephM. JoudakiS. KamionkowskiM. KarwalT. KazantzidisL. KeeleyR.E. KlasenM. KomatsuE. KoopmansL.V.E. KumarS. LamagnaL. LazkozR. LeeC-C. LesgourguesJ. Levi SaidJ. LewisT.R. L’HuillierB. LuccaM. MaartensR. MacriL.M. MarfatiaD. MarraV. MartinsC.J.A.P. MasiS. MatarreseS. MazumdarA. MelchiorriA. MenaO. Mersini-HoughtonL. MertensJ. MilakovićD. MinamiY. MirandaV. Moreno-PulidoC. MorescoM. MotaD.F. MottolaE. MozzonS. MuirJ. MukherjeeA. MukherjeeS. NaselskyP. NathP. NesserisS. NiedermannF. NotariA. NunesR.C. Ó ColgáinE. OwensK.A. ÖzülkerE. PaceF. PaliathanasisA. PalmeseA. PanS. PaolettiD. Perez BergliaffaS.E. PerivolaropoulosL. PesceD.W. PettorinoV. PhilcoxO.H.E. PogosianL. PoulinV. PoulotG. RaveriM. ReidM.J. RenziF. RiessA.G. SablaV.I. SalucciP. SalzanoV. SaridakisE.N. SathyaprakashB.S. SchmaltzM. SchönebergN. ScolnicD. SenA.A. SehgalN. ShafielooA. Sheikh-JabbariM.M. SilkJ. SilvestriA. SkaraF. SlothM.S. Soares-SantosM. Solà PeracaulaJ. SongshengY-Y. SorianoJ.F. StaicovaD. StarkmanG.D. SzapudiI. TeixeiraE.M. ThomasB. TreuT. TrottE. van de BruckC. VazquezJ.A. VerdeL. VisinelliL. WangD. WangJ-M. WangS-J. WatkinsR. WatsonS. WebbJ.K. WeinerN. WeltmanA. WitteS.J. WojtakR. YadavA.K. YangW. ZhaoG-B. ZumalacárreguiM. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies.J. High Energy Astrophys.2022344921110.1016/j.jheap.2022.04.002
    [Google Scholar]
  19. IvanovM.A. ReimerA. Superstrongly interacting gravitons: Low-energy quantum gravity and vacuum effects.Horizons in World PhysicsNova ScienceNew York3122024225240
    [Google Scholar]
  20. IvanovM.A. Asymptotic freedom in low-energy quantum gravity.arXiv:0801.02912008
    [Google Scholar]
  21. IvanovM.A. A non-universal transition to asymptotic freedom in low-energy quantum gravity.J. Grav. Phys.20082226
    [Google Scholar]
  22. IvanovM.A. Low-energy quantum gravity and cosmology without dark energy.Adv. Astrophys.201941110.22606/adap.2019.41001
    [Google Scholar]
  23. RiessA.G. FilippenkoA.V. ChallisP. ClocchiattiA. DiercksA. GarnavichP.M. GillilandR.L. HoganC.J. JhaS. KirshnerR.P. LeibundgutB. PhillipsM.M. ReissD. SchmidtB.P. SchommerR.A. SmithR.C. SpyromilioJ. StubbsC. SuntzeffN.B. TonryJ. Observational evidence from supernovae for an accelerating universe and a cosmological constant.Astron. J.199811631009103810.1086/300499
    [Google Scholar]
  24. PerlmutterJ.S. AlderingG. GoldhaberG. KnopR.A. Measurements of and from 42 High-Redshift Supernovae.Astrophys. J.199951756510429509
    [Google Scholar]
  25. IvanovM.A. Quantum gravity without quantization.Curr. Phys.20251e2772334834412310.2174/0127723348344123241030061731
    [Google Scholar]
  26. IvanovM.A. Three different effects of the same quantum nature.PoS2022EPS-HEP202111410.22323/1.398.0114
    [Google Scholar]
  27. PenroseR. Singularities and time-asymmetry.General Relativity: An Einstein Centenary Survey.Cambridge University PressCambridge1979581638
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348373429250512104534
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test