Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

The ubiquity of microorganisms has in recent times extended relevance from the physical environment to outer space/cosmic environment. Such outer space/cosmic environments were over time reported microbe free, however recent report showed otherwise implicating space/cosmic travel.

Methods

Diverse interest-based investigators have raised unanswered questions while others yet remain probable. Bio-scientific evaluation of astro-cosmic dynamics possesses the potential of revealing the appropriate status, arrangement, and/or position of microbes especially as global drives focus on controlling microbial spread/proliferation.

Results

The study determines microbes in space and astro-cosmic environment as vulgar epithet yet an unattended potential nursing/distribution hub of pathogenic strains applying science mapping review tools. Using the Preferred-Reporting-Items-for-Systematic-Reviews-and-Meta-Analyses (PRISMA), major scientific databases (Scopus, Web of Science, and PubMed) were searched for required and related data on astro-cosmic studies. A 7-decadal evaluation of authors' published documents using the non-parametric ANOVA test (Kruskal-Wallis H test) and Lotka’s model was applied. Among the three searched databases, Web of Science ranked least in retrieved documents (130) followed by PubMed (331) and Scopus (409) with total documents retrieved as 693 between 1954-2023. Further results revealed that production/publication distribution was significant only in the first decade using Lotk’s model with an annual growth rate of 5.23%. It was also observed that more than 40 topics of interest/conceptual thematic were trending in association with astro-microbiological studies.

Conclusion

A focus on these topics and their associated themes possess the potential for understanding the future position of the microbes in outer space, the distribution of potentially pathogenic strains from outer space and necessitates global interest for such studies.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348323844241029174502
2024-12-03
2025-09-28
Loading full text...

Full text loading...

References

  1. MilojevicT. WeckwerthW. Molecular mechanisms of microbial survivability in outer space: A systems biology approach.Front. Microbiol.20201192310.3389/fmicb.2020.0092332499769
    [Google Scholar]
  2. ZhangX. FangX. LiuC. Genomic and proteomic analysis of Escherichia coli after spaceflight reveals changes involving metabolic pathways.Arch. Med. Res.201546318118510.1016/j.arcmed.2015.03.00725846064
    [Google Scholar]
  3. WangY. YuanY. LiuJ. SuL. ChangD. GuoY. ChenZ. FangX. WangJ. LiT. ZhouL. FangC. YangR. LiuC. Transcriptomic and proteomic responses of Serratia marcescens to spaceflight conditions involve large-scale changes in metabolic pathways.Adv. Space Res.20145371108111710.1016/j.asr.2014.01.018
    [Google Scholar]
  4. SanchoL.G. de la TorreR. HorneckG. AscasoC. de los RiosA. PintadoA. WierzchosJ. SchusterM. Lichens survive in space: Results from the 2005 LICHENS experiment.Astrobiology20077344345410.1089/ast.2006.004617630840
    [Google Scholar]
  5. SuL. ZhouL. LiuJ. CenZ. WuC. WangT. ZhouT. ChangD. GuoY. FangX. WangJ. LiT. YinS. DaiW. ZhouY. ZhaoJ. FangC. YangR. LiuC. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight.Adv. Space Res.2014531182910.1016/j.asr.2013.08.001
    [Google Scholar]
  6. Van MuldersS.E. StassenC. DaenenL. DevreeseB. SiewersV. van EijsdenR.G.E. NielsenJ. DelvauxF.R. WillaertR. The influence of microgravity on invasive growth in Saccharomyces cerevisiae.Astrobiology2011111455510.1089/ast.2010.051821345087
    [Google Scholar]
  7. ChukwukaG.E. IgereB.E. OfesiA.O. AdeolaM.O. OnianwahI.F. Antibiocompetent and bacteriocidal relevance of ascorbic acid on coliforms isolated from feces of apparently healthy students in Rivers Nigeria.Dutse J. Pur. Appl. Sci.202393a13714610.4314/dujopas.v9i3a.14
    [Google Scholar]
  8. IgereBE EhwariemeAD OkolieEC GxaloO (2021) Exogenous and cell-free nucleic acids in water bodies: A penchant for emergence of pandemic and other particulate nucleic acid associated hazards of public health concern in water nexus Nigerian Journal of Science and Environment, Vol.192
  9. IgereB.E. OnohueanH. NwodoU.U. Modern knowledge-scape possess petite influence on the factual persistence of resistance determinants (ARGs/MGEs): A map and assessment of discharged wastewater and water bodies.Heliyon2022812e12253[a10.1016/j.heliyon.2022.e1225336568670
    [Google Scholar]
  10. IgereB.E. OnohueanH. NwodoU.U. Water bodies are potential hub for spatio-allotment of cell-free nucleic acid and pandemic: A pentadecadal (1969–2021) critical review on particulate cell-free DNA reservoirs in water nexus.Bull. Natl. Res. Cent.202246156[b10.1186/s42269‑022‑00750‑y35283621
    [Google Scholar]
  11. IgereB.E. PeterW.O. BeshiruA. Distribution/spread of superbug and potential ESKAPE-B pathogens amongst domestic and environmental activities: A public health concern.Discovery202258313120[c]
    [Google Scholar]
  12. LeysN.M. HendrickxL. De BoeverP. BaatoutS. MergeayM. Space flight effects on bacterial physiology.J. Biol. Regul. Homeost. Agents2004182193199[PMID: 15471227
    [Google Scholar]
  13. LiJ. LiuF. WangQ. GeP. WooP.C.Y. YanJ. ZhaoY. GaoG.F. LiuC.H. LiuC. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability.Sci. Rep.201441621610.1038/srep0621625163721
    [Google Scholar]
  14. NicholsonW.L. MoellerR. HorneckG. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT.Astrobiology201212546948610.1089/ast.2011.074822680693
    [Google Scholar]
  15. WilsonJ.W. OttC.M. QuickL. DavisR. Höner zu BentrupK. CrabbéA. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight.PLoS One20083e392310.1371/journal.pone.0003923
    [Google Scholar]
  16. AuninsT.R. EricksonK.E. PrasadN. LevyS.E. JonesA. ShresthaS. MastracchioR. StodieckL. KlausD. ZeaL. ChatterjeeA. Spaceflight Modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response.Front. Microbiol.2018931010.3389/fmicb.2018.0031029615983
    [Google Scholar]
  17. BakerP.W. LeffL.G. Mir space station bacteria responses to modeled reduced gravity under starvation conditions.Adv. Space Res.20063861152115810.1016/j.asr.2006.05.01415836494
    [Google Scholar]
  18. HorneckG. StöfflerD. OttS. HornemannU. CockellC.S. MoellerR. MeyerC. de VeraJ.P. FritzJ. SchadeS. ArtemievaN.A. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: First phase of lithopanspermia experimentally tested.Astrobiology200881174410.1089/ast.2007.013418237257
    [Google Scholar]
  19. BenoitM.R. KlausD.M. Microgravity, bacteria, and the influence of motility.Adv. Space Res.20073971225123210.1016/j.asr.2006.10.009
    [Google Scholar]
  20. ZeaL. PrasadN. LevyS.E. StodieckL. JonesA. ShresthaS. KlausD. A molecular genetic basis explaining altered bacterial behavior in space.PLoS One20161111e016435910.1371/journal.pone.016435927806055
    [Google Scholar]
  21. BertalanffyL.V. Der organismus als physikalisches system betrachtet.Naturwissenschaften194033522531
    [Google Scholar]
  22. ChiangA.J. Malli MohanG.B. SinghN.K. VaishampayanP.A. KalkumM. VenkateswaranK. Alteration of proteomes in first- generation cultures of Bacillus pumilus spores exposed to outer space.mSystems201944e00195e1910.1128/mSystems.00195‑1931186338
    [Google Scholar]
  23. ChopraV. FadlA.A. ShaJ. ChopraS. GalindoC.L. ChopraA.K. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions.J. Toxicol. Environ. Health A200669141345137010.1080/1528739050036179216760141
    [Google Scholar]
  24. TaylorP. Impact of space flight on bacterial virulence and antibiotic susceptibility.Infect. Drug Resist.2015824926210.2147/IDR.S6727526251622
    [Google Scholar]
  25. NicholsonW.L. MunakataN. HorneckG. MeloshH.J. SetlowP. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments.Microbiol. Mol. Biol. Rev.200064354857210.1128/MMBR.64.3.548‑572.200010974126
    [Google Scholar]
  26. OrsiniS.S. LewisA.M. RiceK.C. Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression.NPJ Microgravity201731410.1038/s41526‑016‑0006‑428649626
    [Google Scholar]
  27. OttE. FuchsF.M. MoellerR. HemmersbachR. KawaguchiY. YamagishiA. WeckwerthW. MilojevicT. Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach.Sci. Rep.20199118462[a10.1038/s41598‑019‑54742‑631804539
    [Google Scholar]
  28. VaishampayanP.A. RabbowE. HorneckG. VenkateswaranK.J. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.Astrobiology201212548749710.1089/ast.2011.073822680694
    [Google Scholar]
  29. HorneckG. KlausD.M. MancinelliR.L. Space Microbiology.Microbiol. Mol. Biol. Rev.201074112115610.1128/MMBR.00016‑0920197502
    [Google Scholar]
  30. WeckwerthW. Green systems biology — from single genomes, proteomes and metabolomes to ecosystems research and biotechnology.J. Proteomics201175128430510.1016/j.jprot.2011.07.01021802534
    [Google Scholar]
  31. WilsonJ.W. OttC.M. zu BentrupK.H. RamamurthyR. QuickL. PorwollikS. ChengP. McClellandM. TsaprailisG. RadabaughT. HuntA. FernandezD. RichterE. ShahM. KilcoyneM. JoshiL. Nelman-GonzalezM. HingS. ParraM. DumarsP. NorwoodK. BoberR. DevichJ. RugglesA. GoulartC. RupertM. StodieckL. StaffordP. CatellaL. SchurrM.J. BuchananK. MoriciL. McCrackenJ. AllenP. Baker-ColemanC. HammondT. VogelJ. NelsonR. PiersonD.L. Stefanyshyn-PiperH.M. NickersonC.A. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq.Proc. Natl. Acad. Sci. USA200710441162991630410.1073/pnas.070715510417901201
    [Google Scholar]
  32. SaffaryR. NandakumarR. SpencerD. RobbF.T. DavilaJ.M. SwartzM. OfmanL. ThomasR.J. DiRuggieroJ. Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight.FEMS Microbiol. Lett.2002215116316810.1111/j.1574‑6968.2002.tb11386.x12393217
    [Google Scholar]
  33. WeckwerthW. Systemtheoretische konzepte der genomweiten molekularen analyse und datenintegration in der biologie. aus der schriftenreihe der hülsenberger gespräche.HamburgHeigener Europrint GmbH20166871
    [Google Scholar]
  34. WeckwerthW. Toward a unification of system-theoretical principles in biology and ecology—the stochastic lyapunov matrix equation and its inverse application.Front. Appl. Math. Stat.201952910.3389/fams.2019.00029
    [Google Scholar]
  35. SunX. WeckwerthW. COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data.Metabolomics20128S1819310.1007/s11306‑012‑0399‑3
    [Google Scholar]
  36. OttE. KawaguchiY. ÖzgenN. YamagishiA. RabbowE. RettbergP. WeckwerthW. MilojevicT. Proteomic and metabolomic profiling of Deinococcus radiodurans recovering after exposure to simulated low earth orbit vacuum conditions.Front. Microbiol.201910909[b10.3389/fmicb.2019.0090931110498
    [Google Scholar]
  37. OttE. KawaguchiY. KölblD. ChaturvediP. NakagawaK. YamagishiA. WeckwerthW. MilojevicT. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission.PLoS One20171212e018938110.1371/journal.pone.018938129244852
    [Google Scholar]
  38. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.PLoS Med.200967e100009710.1371/journal.pmed.100009719621072
    [Google Scholar]
  39. EkundayoT.C. IgereB.E. IwuC.D. OluwafemiY.D. TiamiyuA.M. AdesinaI.A. AnuoluwaI.A. EkundayoE.A. BelloO.O. OlaniyiO.O. IjabadeniyiO.A. Prevalence of laribacter hongkongensis in food and environmental matrices: A systematic review and meta-analysis.Food Microbiol.202210710408910.1016/j.fm.2022.10408935953181
    [Google Scholar]
  40. PaoM.L. Lotka’s law: A testing procedure.Inf. Process. Manage.198521430532010.1016/0306‑4573(85)90055‑X
    [Google Scholar]
  41. ArunasriK. AdilM. Venu CharanK. SuvroC. HimabinduR.S. ShivajiS. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression.PLoS One20138e5786010.1371/journal.pone.s0057860
    [Google Scholar]
  42. BlachowiczA. ChiangA.J. ElsaesserA. KalkumM. EhrenfreundP. StajichJ.E. TorokT. WangC.C.C. VenkateswaranK. Proteomic and metabolomic characteristics of extremophilic fungi under simulated mars conditions.Front. Microbiol.201910101310.3389/fmicb.2019.0101331156574
    [Google Scholar]
  43. CrabbéA. Nielsen-PreissS.M. WoolleyC.M. BarrilaJ. BuchananK. McCrackenJ. Spaceflight enhances cell aggregation and random budding in Candida albicans.PLoS One20138e8067710.1371/journal.pone.0080677
    [Google Scholar]
  44. MorrisonM.D. Fajardo-CavazosP. NicholsonW.L. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the international space station.NPJ Microgravity201951110.1038/s41526‑018‑0061‑030623021
    [Google Scholar]
  45. NicholsonW.L. Ancient micronauts: Interplanetary transport of microbes by cosmic impacts.Trends Microbiol.200917624325010.1016/j.tim.2009.03.00419464895
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348323844241029174502
Loading
/content/journals/cphs/10.2174/0127723348323844241029174502
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test