Current Pharmaceutical Design - Volume 6, Issue 12, 2000
Volume 6, Issue 12, 2000
-
-
GABA Uptake Inhibitors. Design, Molecular Pharmacology and Therapeutic Aspects
Authors: P. Krogsgaard-Larsen, B. Frolund and K. FrydenvangIn the mid seventies a drug design programme using the Amanita muscaria constituent muscimol (7) as a lead structure, led to the design of guvacine (23) and (R)-nipecotic acid (24) as specific GABA uptake inhibitors and the isomeric compounds isoguvacine (10) and isonipecotic acid (11) as specific GABAA receptor agonists. The availability of these compounds made it possible to study the pharmacology of the GABA uptake systems and the GABAA receptors separately. Based on extensive cellular and molecular pharmacological studies using 23, 24, and a number of mono-and bicyclic analogues, it has been demonstrated that neuronal and glial GABA transport mechanisms have dissimilar substrate specificities. With GABA transport mechanisms as pharmacological targets, strategies for pharmacological interventions with the purpose of stimulating GABA neurotransmission seem to be (1) effective blockade of neuronal as well as glial GABA uptake in order to enhance the inhibitory effects of synaptically released GABA, or (2) selective blockade of glial GABA uptake in order to increase the amount of GABA taken up into, and subsequently released from, nerve terminals. The bicyclic compound (R)-N-Me-exo-THPO (17) has recently been reported as the most selective glial GABA uptake inhibitor so far known and may be a useful tool for further elucidation of the pharmacology of GABA transporters. In recent years, a variety of lipophilic analogues of the amino acids 23 and 24 have been developed, and one of these compounds, tiagabine (49) containing (R)-nipecotic acid (24) as the GABA transport carrier-recognizing structure element, is now marketed as an antiepileptic agent.
-
-
-
Dopamine Agonists in the Treatment of Parkinsons Disease-Past, Present and Future
By S.Y. SitAn attempt is made by the author to highlight the important events that laid the foundation of dopamine agonists as a treatment strategy for Parkinsons disease. This debilitating neurodegenerative disorder is long recognized as a result of progressive cell loss in the substantia nigra of the midbrain. The destruction of dopaminergic neurons with projections to the striatum results in the diminishing striatal dopamine levels. Anticholinergic drugs were once widely used to counteract the relative overactivity of cholinergic output from the basal ganglia and the strategy was only met with limited success. The discovery of dopamine depletion and the use of levodopa - a dopamine metabolic precursor, led the way to dopamine replacement therapy. The initial success with levodopa was soon overshadowed by the long-term side effects associated with levodopa. Many new drugs were developed with the hope to replace or strengthen the usefulness of levodopa. Apomorphine and ergot alkaloids have been around for some time they are recently joined by newer dopamine agonists such as ropinirole and pramipexole. Each of these has its own characteristics and has occupied a place in the pharmacotherapy of Parkinsons disease. In this review older aporphines and ergot alkaloids are discussed first. More emphasis is directed to the side-effect profiles, metabolism and pharmacokinetics in terms of their unique chemical structures. The most recent agonists will be briefly discussed before we move on to the future - the future of emerging novel classes of promising dopaminergic agonists.
-
-
-
Conotoxins-New Vistas for Peptide Therapeutics
Authors: R.M. Jones and G. BulajThere are approximately 500 species of predatory cone snails within the genus Conus. They comprise what is arguably the largest single genus of marine animals alive today. It has been estimated that the venom of each Conus species has between 50 and 200 components. These highly constrained sulfur rich components or conotoxins represent a unique arsenal of neuropharmacologically active peptides that have been evolutionarily tailored to afford unprecedented and exquisite selectivity for a wide variety of ion-channel subtypes. Remarkable divergence occurs when cone snails speciate. Consequently, the complement of venom peptides in any one Conus species is distinct from that of any other species. Hence many thousands of peptides that modulate ion channel function are present within Conus venoms. Evolutionary pressures have afforded a pre-optimized, structurally sophisticated library that has been fine tuned over 50 million years. The statistics associated with sampling such libraries bear testimony to the validity and feasibility of this strategy. Although approximately 100 conotoxin sequences have been published in the scientific literature, representing a mere 0.2 pecent of the estimated library size, this sample has already afforded a peptide of proven clinical utility and several pre-clinical leads for CNS disorders. Conus libraries represent a rich pharmacopoeia and the potential to therapeutically mine such a resource appears limitless. The paucity of synthetic methodologies necessary to achieve the regioisomeric folding patterns present in these native peptides precludes access to synthetic conotoxin libraries, further validating the overall mining strategy. In this article, we will present a pragmatic overview of the molecular diversity as well as the neurobiological mechanisms that define each major class of conotoxin.
-
-
-
Drugs with Estrogen-like Potency and Brain Activity Potential Therapeutic Application for the CNS
Authors: M. Cyr, F. Calon, M. Morissette, M. Grandbois, S. Callier and T.D. PaoloNumerous reports, ranging from molecular investigations to clinical studies, demonstrate the potency of estrogens to modulate brain function and their implications in schizophrenia and depression. Alterations of dopaminergic, cholinergic, GABAergic, glutamatergic and serotonergic neurotransmission through estrogen-mediated mechanisms have been consistently established. Moreover, studies using in vivo and in vitro models as well as epidemiological data suggest that estrogens provide neuroprotection of central nervous system (CNS) cells implicated in the etiology of neurodegenerative disorders such as Alzheimers (AD) and Parkinsons (PD) diseases. Numerous genomic or non-genomic mechanisms of actions of estrogens in the brain have been documented implicating classical nuclear estrogen receptors as well as possible estrogen membrane receptors, antioxidant activity of steroids, their effect on fluidity as well as on antiapoptotic proteins and growth factors. Selective estrogen receptor modulators (SERMs) have estrogenic and/or antiestrogenic activity depending on the target tissue. Hence, SERMs have the same beneficial effect as estrogen in skeleton and cardiovascular systems but act as antagonists in breast and uterus. The finding of beneficial side effects of SERMs in the CNS might improve their risk-benefit ratio in traditional indications. In this review, we will survey schizophrenia and depression as examples of mental diseases and AD and PD as neurodegenerative diseases. We will review brain effects of estrogens, steroids possibly acting as pro-drugs of estrogens such as testosterone and dehydroepiandrosterone (DHEA) and present novel findings with SERMs. Drugs with estrogen activity in the brain may have therapeutic potential either by modulating brain neurotransmitter transmission or through neuroprotective activity.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
