Current Pharmaceutical Design - Volume 26, Issue 8, 2020
Volume 26, Issue 8, 2020
-
-
Molecular Docking, Synthesis and anti-HIV-1 Protease Activity of Novel Chalcones
Background: Since the beginning of the HIV/AIDS epidemic, 75 million people have been infected with the HIV and about 32 million people have died of AIDS. Investigation of the molecular mechanisms critical to the HIV replication cycle led to the identification of potential drug targets for AIDS therapy. One of the most important discoveries is HIV-1 protease, an enzyme that plays an essential role in the replication cycle of HIV. Objective: The aim of the present study is to synthesize and investigate anti-HIV-1 protease activity of some chalcone derivatives with the hope of discovering new lead structure devoid drug resistance. Methods: 20 structurally similar chalcone derivatives were synthesized and their physico-chemical characterization was performed. Binding of chalcones to HIV-1 protease was investigated by fluorimetric assay. Molecular docking studies were conducted to understand the interactions. Results: The obtained results revealed that all compounds showed anti-HIV-1 protease activity. Compound C1 showed the highest inhibitory activity with an IC50 value of 0.001 μM, which is comparable with commercial product Darunavir. Conclusion: It is difficult to provide general principles of inhibitor design. Structural properties of the compounds are not the only consideration; ease of chemical synthesis, low molecular weight, bioavailability, and stability are also of crucial importance. Compared to commercial products the main advantage of compound C1 is the ease of chemical synthesis and low molecular weight. Furthermore, compound C1 has a structure that is different to peptidomimetics, which could contribute to its stability and bioavailability.
-
-
-
Bacterial Resistance: Antibiotics of Last Generation used in Clinical Practice and the Arise of Natural Products as New Therapeutic Alternatives
Authors: Rúbia C.G. Corrêa, Sandrina A. Heleno, Maria J. Alves and Isabel C.F.R. FerreiraBacterial resistance to therapeutical drugs has been a serious issue over the last decades. In fact, the quick development of resistance mechanisms by the microorganisms has been fatal for millions of people around the world, turning into a public health issue. The major cause of the resistance mechanisms is the overuse of antimicrobials. European countries try to implement mechanisms to overcome antimicrobial resistance in the community through the rational use of antimicrobials. The scientific community has been exhaustively dedicated to the discovering of new, safer and efficient drugs, being the exploitation of natural resources, mainly plants and fungi, considered as a hot topic in the field of antimicrobial agents. Innumerous reports have already shown the promising capacity of natural products or molecules extracted from these natural resources, to act as bacteriostatic and bactericidal agents. More importantly, these natural agents present significantly lower harmful effects. Bearing that in mind, this review aims at giving a contribution to the knowledge about the synthetic antibiotics of the last generation. Moreover, it is intended to provide information about the last advances regarding the discovery of new antimicrobial agents. Thus, a compilation of the chemical characteristics, efficiency, harmful outcomes and resistance mechanisms developed by the microorganisms can be consulted in the following sections together with a critical discussion, in line with the recent approaches. Furthermore, modern strategies for the prospection of novel anti-infective compounds for tackling resistant bacteria have been considered as also a current synopsis of plants and mushrooms with relevant antimicrobial potentials.
-
-
-
Lipophilic Guanylhydrazone Analogues as Promising Trypanocidal Agents: An Extended SAR Study
In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping sickness and Chagas disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a significant socioeconomic burden in low-income countries of sub-Saharan Africa and Latin America, respectively. Drug development is underfunded. Moreover, current treatments are outdated and difficult to administer, while drug resistance is an emerging concern. The synthesis of adamantane-based compounds that have potential as antitrypanosomal agents is extensively reviewed. The critical role of the adamantane ring was further investigated by synthesizing and testing a number of novel lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the adamantane ring generated the most active analogues, illustrating the synergistic effect of the lipophilic character of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The n-decyl C1-substituted compound G8 proved to be the most potent adamantane derivative against T. brucei with activity in the nanomolar range (EC50=90 nM). Molecular simulations were also performed to better understand the structure-activity relationships between the studied guanylhydrazone analogues and their potential enzyme target.
-
-
-
Heterocycle Compounds with Antimicrobial Activity
Authors: Maria Fesatidou, Anthi Petrou and Geronikaki AthinaBackground: Bacterial infections are a growing problem worldwide causing morbidity and mortality mainly in developing countries. Moreover, the increased number of microorganisms, developing multiple resistances to known drugs, due to abuse of antibiotics, is another serious problem. This problem becomes more serious for immunocompromised patients and those who are often disposed to opportunistic fungal infections. Objective: The objective of this manuscript is to give an overview of new findings in the field of antimicrobial agents among five-membered heterocyclic compounds. These heterocyclic compounds especially five-membered attracted the interest of the scientific community not only for their occurrence in nature but also due to their wide range of biological activities. Methods: To reach our goal, a literature survey that covers the last decade was performed. Results: As a result, recent data on the biological activity of thiazole, thiazolidinone, benzothiazole and thiadiazole derivatives are mentioned. Conclusion: It should be mentioned that despite the progress in the development of new antimicrobial agents, there is still room for new findings. Thus, research still continues.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
