Current Pharmaceutical Design - Volume 26, Issue 35, 2020
Volume 26, Issue 35, 2020
-
-
Marine-derived Polyaromatic Butenolides - Isolation, Synthesis and Biological Evaluations
Authors: Joe Bracegirdle and Robert A. KeyzersMarine invertebrates, especially tunicates, are a lucrative resource for the discovery of new lead compounds for the development of clinically utilized drugs. This review describes the isolation, synthesis and biological activities of several classes of marine-derived butenolide natural products, namely rubrolides and related cadiolides and prunolides. All relevant studies pertaining to these compounds up to the end of 2019 are included.
-
-
-
Potential for Treatment of Neurodegenerative Diseases with Natural Products or Synthetic Compounds that Stabilize Microtubules
Authors: John H. Miller and Viswanath DasNo effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.
-
-
-
An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets
Authors: Anjali Sharma, Sharad Wakode, Faizana Fayaz, Shaik Khasimbi, Faheem H. Pottoo and Avneet KaurPiperazine scaffolds are a group of heterocyclic atoms having pharmacological values and showing significant results in pharmaceutical chemistry. Piperazine has a flexible core structure for the design and synthesis of new bioactive compounds. These flexible heterogenous compounds exhibit various biological roles, primarily anticancer, antioxidant, cognition enhancers, antimicrobial, antibacterial, antiviral, antifungal, antiinflammatory, anti-HIV-1 inhibitors, antidiabetic, antimalarial, antidepressant, antianxiety and anticonvulsant activities, etc. In the past few years, researchers focused on the therapeutic profile of piperazine synthons for different biological targets. The present review highlights the development in designing pharmacological activities of nitrogen-containing piperazine moiety as a therapeutic agent. The extensive popularity of piperazine as a drug of abuse and their vast heterogeneity research efforts over the last years motivated the new investigators to further explore this area.
-
-
-
A Review on the Progress and Prospects of Dengue Drug Discovery Targeting NS5 RNA- Dependent RNA Polymerase
Dengue virus (DENV) infection threatens the health and wellbeing of almost 100 million people in the world. Vectored by mosquitoes, DENV may cause a severe disease in human hosts called Dengue hemorrhagic fever (DHF)/Dengue shock syndrome (DSS), which is not preventable by any known drug. In the absence of a universally-accepted vaccine, a drug capable of inhibiting DENV multiplication is an urgent and unmet clinical need. Here we summarize inhibitory strategies by targeting either host biochemical pathways or virus-encoded proteins. A variety of approaches have been generated to design Directly-acting anti-virals or DAAs targeting different DENV proteins, with diverse success. Among them, DAAs targeting genome replicating viral enzymes have proven effective against many viruses including, Human Immuno-deficiency Virus and Hepatitis C Virus. DAAs may be derived either from existing compound libraries of novel molecules and plant secondary metabolites or devised through Computer-aided Drug design (CADD) methods. Here, we focus on compounds with reported DAA-activity against the DENV RNA-dependent RNA polymerase (RdRp), which replicate the viral RNA genome. The structure-activity relationship (SAR) and toxicity of the natural compounds, including secondary plant metabolites, have been discussed in detail. We have also tabulated novel compounds with known anti-RdRp activity. We concluded with a list of DAAs for which a co-crystal structure with RdRp is reported. Promising hit compounds are often discarded due to poor selectivity or unsuitable pharmacokinetics. We hope this review will provide a useful reference for further studies on the development of an anti-DENV drug.
-
-
-
Phytotherapy for Cardiovascular Disease: A Bench-to-Bedside Approach
At present, cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, and global trends suggest that this panorama will persist or worsen in the near future. Thus, optimization of treatment strategies and the introduction of novel therapeutic alternatives for CVD represent key objectives in contemporary biomedical research. In recent years, phytotherapy-defined as the therapeutic use of whole or minimally modified plant components-has ignited large scientific interest, with a resurgence of abundant investigation on a wide array of medicinal herbs (MH) for CVD and other conditions. Numerous MH have been observed to intervene in the pathophysiology of CVD via a myriad of molecular mechanisms, including antiinflammatory, anti-oxidant, and other beneficial properties, which translate into the amelioration of three essential aspects of the pathogenesis of CVD: Dyslipidemia, atherosclerosis, and hypertension. Although the preclinical data in this scenario is very rich, the true clinical impact of MH and their purported mechanisms of action is less clear, as large-scale robust research in this regard is in relatively early stages and faces important methodological challenges. This review offers a comprehensive look at the most prominent preclinical and clinical evidence currently available concerning the use of MH in the treatment of CVD from a bench-to-bedside approach.
-
-
-
Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
-
-
-
Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
-
-
-
Cancer Pro-oxidant Therapy Through Copper Redox Cycling: Repurposing Disulfiram and Tetrathiomolybdate
More LessBackground: Copper (Cu) is a transition metal active in Fenton redox cycling from reduced Cu+ and H2O2, to oxidized Cu2+ and the hydroxyl radical (·OH) highly reactive oxygen species (ROS). At homeostatic Cu levels, ROS promote cell proliferation, migration, angiogenesis, and wound repair. To limit ROS toxicity, cells use Cu-dependent chaperone proteins, Cu-binding ceruloplasmin, and Cu-modulated enzymes like superoxide dismutases (SOD) like SOD1 and SOD3 to scavenge excess superoxide anions which favour Cu+ reduction, and mitochondrial cytochrome c oxidase, important in aerobic energy production. Because Cu helps drive tumor cell proliferation by promoting growth factor-independent receptor tyrosine kinase signaling, and Cu-dependent MEK1 involved in oncogenic BRAF-V600E signaling, further augmenting bioavailable Cu may promote ROS overproduction, cancer progression and eventually tumor cell death. For these reasons, the following clinically approved copper chelators are being repurposed as anti-cancer agents: a) ammonium tetrathiomolybdate (TTM) used to treat Wilson’s disease (copper overload) and Menkes disease (copper deficiency); b) Disulfiram (DSF), used against alcoholism, since it inhibits Aldehyde Dehydrogenase (ALDH1) enzyme, important in ethanol detoxification, and a key target against cancer stem cells. Moreover, TTM and DSF are also relevant in cancer clinical trials, because they increase the uptake of both Cu and Platinum (Pt)-containing anti-cancer drugs, since Pt and Cu share the same CTR1 copper transporter. Purpose: The majority of reports on Cu chelators dealt separately with either TTM, DSF or others. Here, we compare in parallel, the anti-cancer efficacy of low doses of TTM and DSF, asking whether they can be synergistic or antagonistic. The relevance of their unequal ROS inducing abilities and their different behavior as ionophores is also addressed. Significance: The potential of Cu chelators as repurposed anti-cancer drugs, should be greater in patients with higher endogenous Cu levels. Since platinum and Cu share uptake receptors, the synergism by drugs containing these metals should not be under-estimated. The potential of disulfiram or its metabolically active Cu-containing form, to inhibit ALDH1-positive tumor cells is therapeutically very important.
-
-
-
The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of the heterocyclic aromatic compound quinoline. These economical compounds have been used as antimalarial agents for many years. Currently, they are used as monotherapy or in conjunction with other therapies for the treatment of autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS) and antiphospholipid antibody syndrome (APS). Based on its effects on the modulation of the autophagy process, various clinical studies suggest that CQ and HCQ could be used in combination with other chemotherapeutics for the treatment of various types of cancer. Furthermore, the antiviral effects showed against Zika, Chikungunya, and HIV are due to the annulation of endosomal/lysosomal acidification. Recently, CQ and HCQ were approved for the U.S. Food and Drug Administration (FDA) for the treatment of infected patients with the coronavirus SARSCoV- 2, causing the disease originated in December 2019, namely COVID-2019. Several mechanisms have been proposed to explain the pharmacological effects of these drugs: 1) disruption of lysosomal and endosomal pH, 2) inhibition of protein secretion/expression, 3) inhibition of antigen presentation, 4) decrease of proinflammatory cytokines, 5) inhibition of autophagy, 6) induction of apoptosis and 7) inhibition of ion channels activation. Thus, evidence has shown that these structures are leading molecules that can be modified or combined with other therapeutic agents. In this review, we will discuss the most recent findings in the mechanisms of action of CQ and HCQ in the immune system, and the use of these antimalarial drugs on diseases.
-
-
-
Role of Histamine as a Peripheral Sympathetic Neuromediator and its Interrelation with Substance P
Authors: Augusto S. Manzo Atencio, Flor A. Pérez de Manzo and Manuel VelascoThis article is an educational review about the fundamental aspects related to the proposal of the existence of a peripheral sympathetic reflex regulated by histamine, through its effect on presynaptic H3 type receptors, under the interaction of a sensory neuron that would be mediated by Substance P. In this respect, we consider it useful to highlight the role of histamine, so we discuss some aspects about its history, metabolism, and function, as well as its interaction with H3 type receptors that are considered as neuroreceptors, which define and typify it as a neuromediator at both levels of the nervous system, central and peripheral.
-
-
-
Anti-Aging Effect of Metformin: A Molecular and Therapeutical Perspective
Aging is a time-dependent inevitable process, in which cellular homeostasis is affected, which has an impact on tissue function. This represents a risk factor for the development of numerous non-transmissible diseases. In consequence, the scientific community continues to search for therapeutic measures capable of improving quality of life and delaying cellular aging. At the center of this research is metformin, a widely used drug in Type 2 Diabetes Mellitus treatment that has a reduced adverse effects profile. Furthermore, there is evidence that this drug has beneficial health effects that go beyond its anti-hyperglycemic properties. Among these effects, its geronto-protection capability stands out. There is growing evidence that points out to an increased life expectancy as well as the quality of life in model organisms treated with metformin. Therefore, there is an abundance of research centered on elucidating the mechanism through which metformin has its anti-aging effects. Among these, the AMPK, mTORC1, SIRT1, FOXO, NF.kB, and DICER1 pathways can be mentioned. Furthermore, studies have highlighted the possibility of a role for the gut microbiome in these processes. The next step is the design of clinical essays that have as a goal evaluating the efficacy and safety of metformin as an anti-aging drug in humans to create a paradigm in the medical horizon. The question being if metformin is, in fact, the new antiaging therapy in humans?
-
-
-
Non-hormonal Treatments For Menopausal Symptoms and Sleep Disturbances: A Comparison Between Purified Pollen Extracts and Soy Isoflavones
Background: Besides hot-flushes, sleep disturbances increase around menopause, impacting on the quality of life. When hormone replacement therapy is contraindicated, it is necessary to provide alternative treatments. Objectives: This study aimed to observe the effects of an herbal remedy from pollen extracts and soy isoflavones for menopausal complaints, particularly on sleep disorders. Methods: A six-month prospective observational study was performed in women in natural menopause suffering from menopausal symptoms and sleep disturbances. Three groups were compared: 57 women receiving two tablets/ day containing herbal remedy from pollen extracts (group A), 60 women receiving one tablet/day containing isoflavones 60 mg (group B), 47 women not receiving any treatment (group C). At 3 (T3) and 6 months (T6), the daily number of hot-flushes, Kupperman index for menopausal symptoms, the Pittsburgh Sleep Quality Index (PSQI) test were assessed. Results: Both groups A and B showed a significant improvement of hot flushes (p<0.001) and Kuppermann Index (p<0.001) from T0 to T3 and from T0 to T6. No significant differences between treatment groups were found at T3, while at T6 group A showed greater decrease of daily hot flashes and better improvement of Kupperman Index as compared to group B (respectively, -48.8% versus -18.4% and -24.4% versus -15.4%; p<0.001). Improvement of global sleep quality was more evident in the pollen treated group compared to isoflavones group at both three (-24.7% versus -9.3%, p<0.001) and six (-52.9% vs -4.0%; p<0.001) months, mainly for the scores related to subjective sleep quality, sleep latency and habitual sleep efficiency. Conclusion: Non-hormonal treatments can effectively be used in symptomatic menopausal women: among these, after six months of treatment, pollen extracts might achieve a better improvement of hot flushes, sleep disturbances and menopause-related symptoms than soy isoflavones. Herbal remedy from pollen extracts is mainly effective when the quality of sleep is the most disturbing complaint.
-
-
-
Pentoxifylline and Oxypurinol: Potential Drugs to Prevent the “Cytokine Release (Storm) Syndrome” Caused by SARS-CoV-2?
More LessBackground: COVID-19, caused by SARS-CoV-2, is a potentially lethal, rapidly-expanding pandemic and many efforts are being carried out worldwide to understand and control the disease. COVID-19 patients may display a cytokine release syndrome, which causes severe lung inflammation, leading, in many instances, to death. Objective: This paper is intended to explore the possibilities of controlling the COVID-19-associated hyperinflammation by using licensed drugs with anti-inflammatory effects. Hypothesis: We have previously described that pentoxifylline alone, or in combination with oxypurinol, reduces the systemic inflammation caused by experimentally-induced pancreatitis in rats. Pentoxifylline is an inhibitor of TNF-α production and oxypurinol inhibits xanthine oxidase. TNF-α, in turn, activates other inflammatory genes such as Nos2, Icam or IL-6, which regulate migration and infiltration of neutrophils into the pulmonary interstitial tissue, causing injury to the lung parenchyma. In acute pancreatitis, the anti-inflammatory action of pentoxifylline seems to be mediated by the prevention of the rapid and presumably transient loss of PP2A activity. This may also occur in the hyperinflammatory -cytokine releasing phase- of SARS-CoV-2 infection. Therefore, it may be hypothesized that early treatment of COVID-19 patients with pentoxifylline, alone or in combination with oxypurinol, would prevent the potentially lethal acute respiratory distress syndrome. Conclusion: Pentoxifylline and oxypurinol are licensed drugs used for diseases other than COVID-19 and, therefore, phase I clinical trials would not be necessary for the administration to SARS-CoV-2- infected people. It would be worth investigating their potential effects against the hyperinflammatory response to SARS-CoV-2 infection.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
