Current Pharmaceutical Design - Volume 25, Issue 6, 2019
Volume 25, Issue 6, 2019
-
-
Methotrexate Disposition in Pediatric Patients with Acute Lymphoblastic Leukemia: What Have We Learnt From the Genetic Variants of Drug Transporters
Authors: Ya-Hui Hu, Lin Zhou, Shan-Shan Wang, Xia Jing, Hong-Li Guo, Fang Sun, Yong Zhang, Feng Chen, Jing Xu and Xing JiBackground: Methotrexate (MTX) is one of the leading chemotherapeutic agents with the bestdemonstrated efficacies against childhood acute lymphoblastic leukemia (ALL). Due to the narrow therapeutic range, significant inter- and intra-patient variabilities of MTX, non-effectiveness and/or toxicity occur abruptly to cause chemotherapeutic interruption or discontinuation. The relationship between clinical outcome and the systemic concentration of MTX has been well established, making the monitoring of plasma MTX levels critical in the treatment of ALL. Besides metabolizing enzymes, multiple transporters are also involved in determining the intracellular drug levels. In this mini-review, we focused on the genetic polymorphisms of MTX-disposition related transporters and the potential association between the discussed genetic variants and MTX pharmacokinetics, efficacy, and toxicity in the context of MTX treatment. Methods: We searched PubMed for citations published in English using the terms “methotrexate”, “transporter”, “acute lymphoblastic leukemia”, “polymorphisms”, and “therapeutic drug monitoring”. The retrieval papers were critically reviewed and summarized according to the aims of this mini-review. Results: Solute carrier (SLC) transporters (SLC19A1, SLCO1A2, SLCO1B1, and SLC22A8) and ATP-binding cassette (ABC) transporters (ABCB1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2) mediate MTX disposition. Of note, the influences of polymorphisms of SLC19A1, SLCO1B1 and ABCB1 genes on the clinical outcome of MTX have been extensively studied. Conclusion: Overall, the data critically reviewed in this mini-review article confirmed that polymorphisms in the genes encoding SLC and ABC transporters confer higher sensitivity to altered plasma levels, MTX-induced toxicity, and therapeutic response in pediatric patients with ALL. Pre-emptive determination may be helpful in individualizing treatment.
-
-
-
Inhibitors of DNA Methylation and Histone Deacetylation as Epigenetically Active Drugs for Anticancer Therapy
Gene expression is regulated and tightly controlled by epigenetic mechanisms. Alterations of these mechanisms are frequently observed in various diseases, particularly, in various types of cancer. Malignant transformation is caused by the impairment of the mechanisms of cell differentiation and cell cycle control associated with epigenetic changes. Altered patterns of epigenetic modification associated with malignancies can potentially be reversed by some agents that act on the key proteins responsible for DNA/histone modification and chromatin remodelling. Examples of such substances include the inhibitors of DNA methyltransferases or histone deacetylase. During the recent years, a number of such substances have been evaluated as potential therapeutic agents against certain types of cancer in preclinical and clinical studies, and some of them have been approved for treatment of hematological cancers. Application of epidrugs for therapy of solid tumors remains, however, more challenging. In this review, we summarize the current knowledge on the most studied mechanisms of epigenetic modification and the available epigenetically active drugs.
-
-
-
Expression profile of MicroRNA: An Emerging Hallmark of Cancer
Authors: Uzma Zaheer, Muhammed Faheem, Ishtiaq Qadri, Nargis Begum, Hadi M. Yassine, Asmaa A. Al Thani and Shilu MathewMicroRNA (miRNAs), a class of small, endogenous non-coding RNA molecules of about 21-24 nucleotides in length, have unraveled a new modulatory network of RNAs that form an additional level of posttranscriptional gene regulation by targeting messenger RNAs (mRNAs). These miRNAs possess the ability to regulate gene expression by modulating the stability of mRNAs, controlling their translation rates, and consequently regulating protein synthesis. Substantial experimental evidence established the involvement of miRNAs in most biological processes like growth, differentiation, development, and metabolism in mammals including humans. An aberrant expression of miRNAs has been implicated in several pathologies, including cancer. The association of miRNAs with tumor growth, development, and metastasis depicts their potential as effective diagnostic and prognostic biomarkers. Furthermore, exploitation of the role of different miRNAs as oncogenes or tumor suppressors has aided in designing several miRNA-based therapeutic approaches for treating cancer patients whose clinical trials are underway. In this review, we aim to summarize the biogenesis of miRNAs and the dysregulations in these pathways that result in various pathologies and in some cases, resistance to drug treatment. We provide a detailed review of the miRNA expression signatures in different cancers along with their diagnostic and prognostic utility. Furthermore, we elaborate on the potential employment of miRNAs to enhance cancer cell apoptosis, regress tumor progression and even overcome miRNA-induced drug resistance.
-
-
-
GDF-15: A Multifunctional Modulator and Potential Therapeutic Target in Cancer
Authors: Lei Fang, Fengzhou Li and Chundong GuVarious pathological processes are associated with the aberrant expression and function of cytokines, especially those belonging to the transforming growth factor-β (TGF-β) family. Nevertheless, the functions of members of the TGF-β family in cancer progression and therapy are still uncertain. Growth differentiation factor- 15, which exists in intracellular and extracellular forms, is classified as a divergent member of the TGF-β superfamily. It has been indicated that GDF-15 is also connected to the evolution of cancer both positively and negatively depending upon the cellular state and environment. Under normal physiological conditions, GDF-15 inhibits early tumour promotion. However, its abnormal expression in advanced cancers causes proliferation, invasion, metastasis, cancer stem cell formation, immune escape and a reduced response to therapy. As a clinical indicator, GDF-15 can be used as a tool for the diagnosis and therapy of an extensive scope of cancers. Although some basic functions of GDF-15 are noncontroversial, their mechanisms remain unclear and complicated at the molecular level. Therefore, GDF-15 needs to be further explored and reviewed.
-
-
-
Cellular and Molecular Basis of Osteoblastic and Vascular Niches in the Processes of Hematopoiesis and Bone Remodeling (A Short Review of Modern Views)
In evolutionary processes, human bone marrow has formed as an organ depot of various types of cells that arise from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Vital HSC activity is co ntrolled through molecular interactions with the niche microenvironment. The review describes current views on the formation of key molecular and cellular components of the HSC niche, which ensure maintenance of home ostasis in stem cell niches, obtained from studies of their role in regulating the proliferation and differentiation of HSCs, including the physiological, reparative and pathological remodeling of bone tissue. Due to rapid develo pments in biotechnology, tissue bioengineering, and regenerative medicine, information can be useful for develo ping biomimetic and bioinspired materials and implants that provide an effective bone/bone marrow recovery process after injuries and, to a greater extent, diseases of various etiologies.
-
-
-
Recent Advances in the Knowledge of Naturally-derived Bioactive Compounds as Modulating Agents of the Renin-angiotensin-aldosterone System: Therapeutic Benefits in Cardiovascular Diseases
Background: One of the biggest challenges to public health worldwide is to reduce the number of events and deaths related to the cardiovascular diseases. Numerous approaches have been applied to reach this goal, and drug treatment intervention has been indispensable along with an effective strategy for reducing both cardiovascular morbidity and mortality. Renin-angiotensin-aldosterone system (RAAS) blockade is currently one of the most important targets of cardiovascular drug therapy. Many studies have proven the valuable properties of naturally-derived bioactive compounds to treat cardiovascular diseases. Methods: The goal of this review, therefore, is to discuss the recent developments related to medicinal properties about natural compounds as modulating agents of the RAAS, which have made them an attractive alternative to be available to supplement the current therapy options. Results: Data has shown that bioactive compounds isolated from several natural products act either by inhibiting the angiotensin-converting enzyme or directly by modulating the AT1 receptors of angiotensin II, which consequently changes the entire classical axis of this system. Conclusion: While there are a few evidence about the positive actions of different classes of secondary metabolites for the treatment of cardiovascular and renal diseases, data is scarce about the clinical assays established to demonstrate their value in humans.
-
-
-
Visit-to-visit Blood Pressure Variability and Arterial Stiffness: Which Came First: The Chicken or the Egg?
Earlier studies have shown that visit-to-visit blood pressure (BP) variability (VVV) served as a significant independent risk factor of stroke, specifically, in the high-risk elderly of cardiovascular disease (CVD). Although the mechanism is not clearly understood, arterial remodeling such as carotid artery, coronary artery and large aortic artery would be a strong moderator in the relationship between VVV and CVD incidence. Recent studies have provided evidence that VVV predicted the progression of arterial stiffness. While the class of antihypertensive agents is suggested to be an important determinant of VVV, long-acting calcium channel blockers use (CCBs) is associated with the reduction of VVV, and thus, is suggested to decrease the arterial stiffness. Specifically, the relationship between VVV and coronary arterial remodeling has never been reviewed until now. This article summarizes the recent literature on these topics. In the elderly hypertensives, strict BP control using CCBs could play a pivotal role in suppressing arterial stiffening via VVV reduction.
-
-
-
Creation of Cultures Containing Mutations Linked with Cardiovascular Diseases using Transfection and Genome Editing
Objective: In this review article, we analyzed the literature on the creation of cultures containing mutations associated with cardiovascular diseases (CVD) using transfection, transduction and editing of the human genome. Methods: We described different methods of transfection, transduction and editing of the human genome, used in the literature. Results: We reviewed the researches in which the creation of cell cultures containing mutations was described. According to the literature, system CRISPR/Cas9 proved to be the most preferred method for editing the genome. We found rather promising and interesting a practically undeveloped direction of mitochondria transfection using a gene gun. Such a gun can direct a genetically-engineered construct containing human DNA mutations to the mitochondria using heavy metal particles. However, in human molecular genetics, the transfection method using a gene gun is unfairly forgotten and is almost never used. Ethical problems arising from editing the human genome were also discussed in our review. We came to a conclusion that it is impossible to stop scientific and technical progress. It is important that the editing of the genome takes place under the strict control of society and does not bear dangerous consequences for humanity. To achieve this, the constant interaction of science with society, culture and business is necessary. Conclusion: The most promising methods for the creation of cell cultures containing mutations linked with cardiovascular diseases, were system CRISPR/Cas9 and the gene gun.
-
-
-
Hyperuricemia and Cardiovascular Disease
Authors: Shuangshuang Zhang, Yong Wang, Jinsong Cheng, Ning Huangfu, Ruochi Zhao, Zhenyu Xu, Fuxing Zhang, Wenyuan Zheng and Dandan ZhangPurine metabolism in the circulatory system yields uric acid as its final oxidation product, which is believed to be linked to the development of gout and kidney stones. Hyperuricemia is closely correlated with cardiovascular disease, metabolic syndrome, and chronic kidney disease, as attested by the epidemiological and empirical research. In this review, we summarize the recent knowledge about hyperuricemia, with a special focus on its physiology, epidemiology, and correlation with cardiovascular disease. This review also discusses the possible positive effects of treatment to reduce urate levels in patients with cardiovascular disease and hyperuricemia, which may lead to an improved clinical treatment plan.
-
-
-
Heat Shock Protein 70 kDa as a Target for Diagnostics and Therapy of Cardiovascular and Cerebrovascular Diseases
Acute focal ischemia is a main factor of pathogenesis of a number of widespread cardiovascular and cerebrovascular diseases, in particular, myocardial infarction and ischemic stroke. It is known that under the conditions of ischemia expression of intracellular heat shock proteins (HSPs), especially HSP70, grows greatly irrespective of the cell type. This stress-induced cell response is connected with cytoprotective properties of HSP70. The protective functions of HSP70 contribute to the cell survival under adverse conditions and inhibit development of programmed cell death. It was shown, that the level of HSP70 increases in cardiomyocytes and brain cells in response to ischemia, that was connected with cardioprotective and neuroprotective effects. Besides, in recent years, clinical studies of HSP70 have demonstrated elevated level of HSP70 in peripheral blood lymphocytes in groups of patients with ischemic stroke and myocardial infarction. This review indicates that HSP70 can serve as a target for developing new approaches to diagnostics and therapy of cardiovascular and cerebrovascular diseases.
-
-
-
Phytochemistry, Pharmacological Activities, Toxicity and Clinical Application of Momordica cochinchinensis
Authors: Hai-Yue Lan, Bin Zhao, Yu-Li Shen, Xiao-Qin Li, Su-Juan Wang, Li-Jun Zhang and Hong ZhangMomordica cochinchinensis (Lour.) Spreng (M. cochinchinensis) is a deciduous vine that grows in Southeast Asia. It is known as gac in Vietnam and as Red Melon in English. Gac is reputed to be extremely benificial for health and has been widely used as food and folk medicine in Southeast Asia. In China, the seed of M. cochinchinensis (Chinese name: Mu biezi) is used as traditional Chinese medicine (TCM) for the treatment of various diseases. More than 60 chemical constituents have been isolated from M. cochinchinensis. Modern pharmacological studies and clinical practice demonstrate that some chemical constituents of M. cochinchinensis possess wide pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammatory, etc. This paper reviews the phytochemistry, pharmacological activities, toxicity, and clinical application of M. cochinchinensis, aiming to bring new insights into further research and application of this ancient herb.
-
-
-
The Low Molecular Weight Brain-derived Neurotrophic Factor Mimetics with Antidepressant-like Activity
More LessThe search for new highly-effective, fast-acting antidepressant drugs is extremely relevant. Brain derived neurotrophic factor (BDNF) and signaling through its tropomyosin-related tyrosine kinase B (TrkB) receptor, represents one of the most promising therapeutic targets for treating depression. BDNF is a key regulator of neuroplasticity in the hippocampus and the prefrontal cortex, the dysfunction of which is considered to be the main pathophysiological hallmark of this disorder. BDNF itself has no favorable drug-like properties due to poor pharmacokinetics and possible adverse effects. The design of small, proteolytically stable BDNF mimetics might provide a useful approach for the development of therapeutic agents. Two small molecule BDNF mimetics with antidepressant-like activity have been reported, 7,8-dihydroxyflavone and the dimeric dipeptide mimetic of BDNF loop 4, GSB-106. The article reflects on the current literature on the role of BDNF as a promising therapeutic target in the treatment of depression and on the current advances in the development of small molecules on the base of this neurotrophin as potential antidepressants.
-
-
-
Depression and Treatment with Effective Herbs
More LessDepression is a common psychiatric disease and one of the main causes of disability worldwide. In spite of certain developments in this field, chemical and synthetic drugs used for the treatment of depression disrupt the treatment process due to numerous side effects and high cost. Today, the goal of using a potential method for treating depression involves the use of medicinal and phytochemical plants, which have many therapeutic benefits. Studies have shown that medicinal plants affect the nervous system and exert antidepressant effects in various ways, including synaptic regulation of serotonin, noradrenaline and dopamine, and inflammatory mediators. In this study, depression as well as the factors and mechanisms involved in its development are first addressed, and then medicinal plants effective in the treatment of depression along with their mechanisms of actions are reported.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
