Current Pharmaceutical Design - Volume 25, Issue 45, 2019
Volume 25, Issue 45, 2019
-
-
New Insights into Oxidative Damage and Iron Associated Impairment in Traumatic Brain Injury
Authors: Nicolas Toro-Urrego, Liliana F. Turner and Marco F. Avila-RodriguezTraumatic Brain Injury is considered one of the most prevalent causes of death around the world; more than seventy millions of individuals sustain the condition per year. The consequences of traumatic brain injury on brain tissue are complex and multifactorial, hence, the current palliative treatments are limited to improve patients’ quality of life. The subsequent hemorrhage caused by trauma and the ongoing oxidative process generated by biochemical disturbances in the in the brain tissue may increase iron levels and reactive oxygen species. The relationship between oxidative damage and the traumatic brain injury is well known, for that reason, diminishing factors that potentiate the production of reactive oxygen species have a promissory therapeutic use. Iron chelators are molecules capable of scavenging the oxidative damage from the brain tissue and are currently in use for ironoverload- derived diseases. Here, we show an updated overview of the underlying mechanisms of the oxidative damage after traumatic brain injury. Later, we introduced the potential use of iron chelators as neuroprotective compounds for traumatic brain injury, highlighting the action mechanisms of iron chelators and their current clinical applications.
-
-
-
Copper and Neurotoxicity in Autism Spectrum Disorder
Free radicals (FR) act on living organisms and present unpaired electrons in the molecular orbitals of oxygen or nitrogen species. They are classified as redox reactions and account for a wide range of processes in biological systems. Genetic and environmental factors may alter the levels of FR in the cell, leading to deleterious consequences such as membrane lipid peroxidation, protein nitration, enzyme, carbohydrate and DNA damage, ultimately resulting in premature aging and a pro-inflammatory microenvironment as observed in Alzheimer’s disease (AD) and autism spectrum disorder (ASD). O2 radical ability to act as a Lewis base and to form a complex with metal transition such as iron and copper (Lewis acids) leads to biomolecules oxidation at physiological pH, thus increasing the possibility of injury and oxidative damage in biological tissues. In this review, we discuss the role of metals, like copper, and the amyloid precursor protein (APP) derivative (s-APP-alpha) as an antioxidant and a possible adjuvant in the treatment of some autistic spectrum disorder symptoms (ASD).
-
-
-
Neuroinflammation in Demyelinating Diseases: Oxidative Stress as a Modulator of Glial Cross-Talk
Authors: Rodrigo Varas and Fernando C. OrtizMyelin is a specialized membrane allowing for saltatory conduction of action potentials in neurons, an essential process to achieve the normal communication across the nervous system. Accordingly, in diseases characterized by the loss of myelin and myelin forming cells -oligodendrocytes in the CNS-, patients show severe neurological disabilities. After a demyelinated insult, microglia, astrocytes and oligodendrocyte precursor cells invade the lesioned area initiating a spontaneous process of myelin repair (i.e. remyelination). A preserved hallmark of this neuroinflammatory scenario is a local increase of oxidative stress, where several cytokines and chemokines are released by glial and other cells. This generates an environment that determines cell interaction resulting in oligodendrocyte maturity and the ability to synthesize new myelin. Herein we review the main features of the regulatory aspect of these molecules based on recent findings and propose new putative signal molecules involved in the remyelination process, focused in the etiology of Multiple Sclerosis, one of the main demyelinating diseases causing disabilities in the population.
-
-
-
Energy-Sensing Pathways in Ischemia: The Counterbalance Between AMPK and mTORC
Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow. The present review aims to analyze to what extent the lack of each of the elements of the system leads to damage and which mechanisms are unaffected by this deficiency. We believe that the specific analysis of the effect of lack of each component could lead to the emergence of new therapeutic targets for this important brain pathology.
-
-
-
β-amyloid and Oxidative Stress: Perspectives in Drug Development
Alzheimer’s Disease (AD) is a slow-developing neurodegenerative disorder in which the main pathogenic role has been assigned to β-amyloid protein (Aβ) that accumulates in extracellular plaques. The mechanism of action of Aβ has been deeply analyzed and several membrane structures have been identified as potential mediators of its effect. The ability of Aβ to modify neuronal activity, receptor expression, signaling pathways, mitochondrial function, and involvement of glial cells have been analyzed. In addition, extensive literature deals with the involvement of oxidative stress in Aβ effects. Herein we focus more specifically on the reciprocal regulation of Aβ, that causes oxidative stress, that favors Aβ aggregation and toxicity and negatively affects the peptide clearance. Analysis of this strict interaction may offer novel opportunities for therapeutic intervention. Both common and new molecules endowed with antioxidant properties deserve attention in this regard.
-
-
-
Oxidative Stress-Induced Brain Damage Triggered by Voluntary Ethanol Consumption during Adolescence: A Potential Target for Neuroprotection?
Authors: Gustavo E. Buján, Hector A. Serra, Sonia J. Molina and Laura R. GuelmanAlcohol consumption, in particular ethanol (EtOH), typically begins in human adolescence, often in a “binge like” manner. However, although EtOH abuse has a high prevalence at this stage, the effects of exposure during adolescence have been less explored than prenatal or adult age exposure. Several authors have reported that EtOH intake during specific periods of development might induce brain damage. Although the mechanisms are poorly understood, it has been postulated that oxidative stress may play a role. In fact, some of these studies revealed a decrease in brain antioxidant enzymes’ level and/or an increase in reactive oxygen species (ROS) production. Nevertheless, although existing literature shows a number of studies in which ROS were measured in developing animals, fewer reported the measurement of ROS levels after EtOH exposure in adolescence. Importantly, neuroprotective agents aimed to these potential targets may be relevant tools useful to reduce EtOH-induced neurodegeneration, restore cognitive function and improve treatment outcomes for alcohol use disorders (AUDs). The present paper reviews significant evidences about the mechanisms involved in EtOH-induced brain damage, as well as the effect of different potential neuroprotectants that have shown to be able to prevent EtOH-induced oxidative stress. A selective inhibitor of the endocannabinoid anandamide metabolism, a flavonol present in different fruits (quercetin), an antibiotic with known neuroprotective properties (minocycline), a SOD/catalase mimetic, a potent antioxidant and anti-inflammatory molecule (resveratrol), a powerful ROS scavenger (melatonin), an isoquinoline alkaloid (berberine), are some of the therapeutic strategies that could have some clinical relevance in the treatment of AUDs. As most of these works were performed in adult animal models and using EtOH-forced paradigms, the finding of neuroprotective tools that could be effective in adolescent animal models of voluntary EtOH intake should be encouraged.
-
-
-
Long-Term Effects of Hypoxia-Reoxygenation on Thioredoxins in Rat Central Nervous System
Background: Oxidative stress induced by the oxidative pathway dysregulation following ischemia/ reperfusion has been proposed as an important cause of neuronal death and brain damage. The proteins of the thioredoxin (Trx) family are crucial mediators of protein function regulating the intracellular hydrogen peroxide levels and redox-sensitive post-translational protein changes. Aim: To analyze the expression and distribution of fourteen members of the Trx family, potentially essential for the regeneration upon long-term brain damage, in a perinatal hypoxia-ischemia rat model induced by common carotid artery ligation. Methods: The right common carotid artery (CCA) was exposed by an incision on the right side of the neck, isolated from nerve and vein, and permanently ligated. Sham-surgery rats underwent right CCA surgical exposure but no ligation. Euthanasia was administered to all rats at 30, 60, and 90 days of age. Protein expression and distribution of fourteen members of the Trx family and related proteins (Grx1, Grx2, Grx3, Grx5, Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, Trx2, TrxR1, TrxR2) was examined in the most hypoxia susceptible rat brain areas, namely, cerebellum, corpus striatum, and the hippocampus. Results: The thioredoxin proteins displayed a complex, cell-type, and tissue-specific expression pattern following ischemia/reperfusion. Even 60 days after ischemia/reperfusion, Western blot analysis showed a persistent expression of Trx1 and Grx2 in several brain areas. Conclusion: The Trx family of proteins might contribute to long-term survival and recovery supporting their therapeutic use to curtail ischemic brain oxidative damage following an ischemia/reperfusion insult. Characterization of ischemia/reperfusion oxidative brain damage and analysis of the involved mechanisms are required to understand the underneath processes triggered by ischemia/reperfusion and to what extent and in what way thioredoxins contribute to recovery from brain hypoxic stress.
-
-
-
Activation of Melanocortin-4 Receptor by a Synthetic Agonist Inhibits Ethanol-induced Neuroinflammation in Rats
Authors: Osvaldo Flores-Bastías, Gonzalo I. Gómez, Juan A. Orellana and Eduardo KarahanianBackground: High ethanol intake induces a neuroinflammatory response resulting in the subsequent maintenance of chronic alcohol consumption. The melanocortin system plays a pivotal role in the modulation of alcohol consumption. Interestingly, it has been shown that the activation of melanocortin-4 receptor (MC4R) in the brain decreases the neuroinflammatory response in models of brain damage other than alcohol consumption, such as LPS-induced neuroinflammation, cerebral ischemia, glutamate excitotoxicity, and spinal cord injury. Objectives: In this work, we aimed to study whether MC4R activation by a synthetic MC4R-agonist peptide prevents ethanol-induced neuroinflammation, and if alcohol consumption produces changes in MC4R expression in the hippocampus and hypothalamus. Methods: Ethanol-preferring Sprague Dawley rats were selected offering access to 20% ethanol on alternate days for 4 weeks (intermittent access protocol). After this time, animals were i.p. administered an MC4R agonist peptide in the last 2 days of the protocol. Then, the expression of the proinflammatory cytokines interleukin 6 (IL-6), interleukin 1-beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus, hypothalamus and prefrontal cortex. It was also evaluated if ethanol intake produces alterations in the expression of MC4R in the hippocampus and the hypothalamus. Results: Alcohol consumption increased the expression of MC4R in the hippocampus and the hypothalamus. The administration of the MC4R agonist reduced IL-6, IL-1β and TNF-α levels in hippocampus, hypothalamus and prefrontal cortex, to those observed in control rats that did not drink alcohol. Conclusion: High ethanol consumption produces an increase in the expression of MC4R in the hippocampus and hypothalamus. The administration of a synthetic MC4R-agonist peptide prevents neuroinflammation induced by alcohol consumption in the hippocampus, hypothalamus, and prefrontal cortex. These results could explain the effect of α-MSH and other synthetic MC4R agonists in decreasing alcohol intake through the reduction of the ethanol-induced inflammatory response in the brain.
-
-
-
MiR-144-3p Inhibits BMSC Proliferation and Osteogenic Differentiation Via Targeting FZD4 in Steroid-Associated Osteonecrosis
More LessBackground: MicroRNAs have recently been recognized to be engaged in the development of bone diseases. Objective: This study was performed to elucidate the effects of miR-144-3p on proliferation and osteogenesis of mesenchymal stem cells (MSCs) from the patients with steroid-associated osteonecrosis (ONFH) and its related mechanism. Method: The expression level of miR-144-3p in the MSCs from the proximal femur of the patients was examined by Real-time PCR. The cell proliferation ability was assayed by MTT. The differentiation ability of MSCs was assayed by Alizarin Red S (ARS) staining. The interaction between miR-144-3p and frizzled4 (FZD4) was investigated by Real-time PCR, western blot and luciferase reporter assay. Results: ONFH samples had the obviously high expression of miR-144-3p compared to the control. MiR-144-3p had a negative effect on the proliferation and osteogenesis of MSCs. Via targeting FZD4, miR-144-3p decreased β-catenin nuclear translocation, the transcription of RUNX2 and COL1A1. Over-expression of FZD4 partially reversed miR-144-3p-induced decrease in the proliferation and osteogenesis of MSCs. Conclusion: MiR-144-3p might play an important role in the development of ONFH and might be used as a novel class of therapeutic targets for this disease.
-
-
-
Evaluation of Cell-detaching Effect of EDTA in Combination with Oxaliplatin for a Possible Application in HIPEC After Cytoreductive Surgery: A Preliminary in-vitro Study
Background: Ethylenediaminetetraacetic acid (EDTA), a commonly used compound in laboratory medicine, is known for its membrane-destabilization capacity and cell-detaching effect. This preliminary study aims to assess the potential of EDTA in removing residual tumor cell clusters. Using an in-vitro model, this effect is then compared to the cytotoxic effect of oxaliplatin which is routinely administered during HIPEC procedures. The overall cell toxicity and cell detaching effects of EDTA are compared to those of Oxaliplatin and the additive effect is quantified. Methods: HT-29 (ATCC® HTB-38™) cells were treated with A) EDTA only B) Oxaliplatin only and C) both agents using an in-vitro model. Cytotoxicity and cell detachment following EDTA application were measured via colorimetric MTS assay. Additionally, detached cell groups were visualized using light microscopy and further analyzed by means of electron microscopy. Results: When solely applied, EDTA does not exhibit any cell toxicity nor does it add any toxicity to oxaliplatin. However, EDTA enhances the detachment of adherent colon carcinoma cells by removing up to 65% (p<0.05) of the total initial cell amount. In comparison, the sole application of highly concentrated oxaliplatin induced cell mortality by up to 66% (p<0.05). While detached cells showed no mortality after EDTA treatment, cell clusters exhibited a decreased amount of extracellular and adhesive matrix in-between cells. When combined, Oxaliplatin and EDTA display a significant additive effect with only 30% (mean p <0.01) of residual vitality detected in the initial well. EDTA and Oxaliplatin remove up to 81% (p <0.01) of adhesive HT-29 cells from the surface either by cytotoxic effects or cell detachment. Conclusion: Our data support EDTA’s potential to remove microscopical tumor cell clusters from the peritoneum and possibly act as a supplementary agent in HIPEC procedures with chemotherapy. While adding EDTA to HIPEC procedures may significantly decrease the risk of PM recurrence, further in-vivo and clinical trials are required to evaluate this effect.
-
-
-
Cisplatin Toxicology: The Role of Pro-inflammatory Cytokines and GABA Transporters in Cochlear Spiral Ganglion
Authors: Dongmei Gao, Hong Yu, Bo Li, Li Chen, Xiaoyu Li and Wenqing GuBackground: The current study was conducted to examine the specific activation of pro-inflammatory cytokines (PICs), namely IL-1β, IL-6 and TNF-α in the cochlear spiral ganglion of rats after ototoxicity induced by cisplatin. Since γ-aminobutyric acid (GABA) and its receptors are involved in pathophysiological processes of ototoxicity, we further examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3), as two essential subtypes of GATs responsible for the regulation of extracellular GABA levels in the neuronal tissues. Methods: ELISA and western blot analysis were employed to examine the levels of PICs and GATs; and auditory brainstem response was used to assess ototoxicity induced by cisplatin. Results: IL-1β, IL-6 and TNF-α as well as their receptors were significantly increased in the spiral ganglion of ototoxic rats as compared with sham control animals (P<0.05, ototoxic rats vs. control rats). Cisplatin-ototoxicity also induced upregulation of the protein levels of GAT-1 and GAT-3 in the spiral ganglion (P<0.05 vs. controls). In addition, administration of inhibitors to IL-1β, IL-6 and TNF-α attenuated amplification of GAT-1 and GAT-3 and improved hearing impairment induced by cisplatin. Conclusion: Our data indicate that PIC signals are activated in the spiral ganglion during cisplatin-ototoxicity which thereby leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is enhanced in the cochlear spiral ganglion. This supports a role for PICs in engagement of the signal mechanisms associated with cisplatin-ototoxicity, and has pharmacological implications to target specific PICs for GABAergic dysfunction and vulnerability related to cisplatin-ototoxicity.
-
-
-
Risk Factors of Recurrent Ischemic Events after Acute Noncardiogenic Ischemic Stroke
Authors: Limin Zhang, Xingang Li, Dongzhi Wang, Hong Lv, Xuezhong Si, Xiao Li, Yuehong Sun, Dan Wang, Kelin Chen, Xixiong Kang, Xin Lou, Guojun Zhang and Ning MaBackground: A considerable proportion of acute noncardiogenic ischemic stroke patients continue to experience recurrent ischemic events after standard therapy. Aim: We aimed to identify risk factors for recurrent ischemic event prediction at an early stage. Methods: 286 non-cardioembolic ischemic stroke patients with the onset of symptoms within 24 hours were enrolled. Vascular risk factors, routine laboratory data on admission, thromboelastography test seven days after clopidogrel therapy and any recurrent events within one year were assessed. Patients were divided into case group (patients with clinical adverse events, including ischemic stokes, transient ischemic attack, myocardial infarction and vascular related mortality) and control group (events-free patients). The risk of the recurrent ischemic events was determined by the receiver operating characteristic curve and multivariable logistic regression analysis. Results: Clinical adverse events were observed in 43 patients (case group). The mean levels of Mean Platelet Volume (MPV), Platelet/Lymphocyte Ratio (PLR), Lymphocyte Count (LY) and Fibrinogen (Fib) on admission were significantly higher in the case group as compared to the control group (P<0.001). Seven days after clopidogrel therapy, the ADP-induced platelet inhibition rate (ADP%) level was lower in the case group, while the Maximum Amplitude (MA) level was higher in the case group as compared to the control group (P<0.01). The Area Under the Curve (AUC) of receiver operating characteristic(ROC) curve of LY, PLR, , Fib, MA, ADP% and MPV were 0.602, 0.614, 0.629, 0.770, 0.800 and 0.808, respectively. The logistic regression analysis showed that MPV, ADP% and MA were indeed predictive factors. Conclusion: MPV, ADP% and MA were risk factors of recurrent ischemic events after acute noncardiogenic ischemic stroke. Urgent assessment and individual drug therapy should be offered to these patients as soon as possible.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
