Current Pharmaceutical Design - Volume 25, Issue 32, 2019
Volume 25, Issue 32, 2019
-
-
Unraveling the Inhibition of Intestinal Glucose Transport by Dietary Phenolics: A Review
Authors: Joana Pico and Mario M. MartínezBackground: Glucose transport across the intestinal brush border membrane plays a key role in metabolic regulation. Depending on the luminal glucose concentration, glucose is mainly transported by the sodium- dependent glucose transporter (SGLT1) and the facilitated-transporter glucose transporter (GLUT2). SGLT1 is apical membrane-constitutive and it is active at a low luminal glucose concentration, while at concentrations higher than 50 mM, glucose is mainly transported by GLUT2 (recruited from the basolateral membrane). Dietary phenolic compounds can modulate glucose homeostasis by decreasing the postprandial glucose response through the inhibition of SGLT1 and GLUT2. Methods: Phenolic inhibition of intestinal glucose transport has been examined using brush border membrane vesicles from rats, pigs or rabbits, Xenopus oocytes and more recently Caco-2 cells, which are the most promising for harmonizing in vitro experiments. Results: Phenolic concentrations above 100 μM has been proved to successfully inhibit the glucose transport. Generally, the aglycones quercetin, myricetin, fisetin or apigenin have been reported to strongly inhibit GLUT2, while quercetin-3-O-glycoside has been demonstrated to be more effective in SGLT1. Additionally, epigallocatechin as well as epicatechin and epigallocatechin gallates were observed to be inhibited on both SGLT1 and GLUT2. Conclusion: Although, valuable information regarding the phenolic glucose transport inhibition is known, however, there are some disagreements about which flavonoid glycosides and aglycones exert significant inhibition, and also the inhibition of phenolic acids remains unclear. This review aims to collect, compare and discuss the available information and controversies about the phenolic inhibition of glucose transporters. A detailed discussion on the physicochemical mechanisms involved in phenolics-glucose transporters interactions is also included.
-
-
-
Mexican Traditional Plant-Foods: Polyphenols Bioavailability, Gut Microbiota Metabolism and Impact Human Health
Functional foods have been used worldwide since ancient times, particularly, the prehispanic civilizations used several plants as medicinal foods. Nowadays, many Mexicans populations preserve their traditions and dietary patterns based on corn, beans, besides other endemic vegetables, mainly diverse varieties of chili, tomatoes and other plant-foods. It is well known that each species has a special complex mixture of bioactive compounds (BC) in which each component contributes to its overall bioactivity. These BC are plant metabolites that benefit human health by means of anti-inflammatory, immune-modulatory, and antioxidant effects. However, it becomes bioactive at human body when these BC must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. Thus, the intestinal microbiota is the key factor in the mediation of the physiological functions of dietary polyphenols. In fact, , limited information is available, especially on dietary phytochemicals and metabolism in commonly available Mexican plant-foods. In this review, the bioaccesibility and bioavailability major BC from traditional Mexican plant-foods products and its potential health benefits will be discussed. Besides, we compile the scientific reports and the evidence of the impact of some Mexican plant-foods on the gut microbiota dynamic composition, specific microbial metabolites and its possible contributions to human health.
-
-
-
Nopal (Opuntia spp.) and its Effects on Metabolic Syndrome: New Insights for the Use of a Millenary Plant
Background: Nopal (Opuntia spp.) is by excellence the most utilized cactus in human and animal nutrition. It is also a very noble plant; its main physicochemical, nutritional and nutraceutical characteristics allow the use of nopal in diverse food applications. Special focus has been given over the past decades in the use of Opuntia for the treatment of metabolic syndrome (MetS), which is predominantly related to Diabetes Mellitus. In this sense, the prevalence of MetS is increasing at a worldwide level. This in turn has led to a notorious demand for natural and nutraceutical food sources. Methods: The objective of this work was to summarize the main contributions in the field of Opuntia spp. research highlighting the potential use of nopal fruits or cladodes in MetS treatment, providing the reader with historical and novel information in this field. Nevertheless, the present work is not a meta-analysis. We included mainly information from recognized scientific databases, such as PubMed, Scopus, Web of Science and Google Scholar. No homeopathic based studies were included since they lack scientific validation. To the best of our knowledge, this is the first review that fairly categorizes the majority of the information in this field into subsections, which can be of interest for the reader, such as the effect of nopal against cardiovascular disease, type 2 diabetes mellitus, and obesity among others. Conclusion: Nopal constitutes one of the most studied members of the Cactaceae family; its potential effects on human health have been described since ancient times, mostly through traditional medicine. The present work highlights the importance of this plant in the treatment of MetS related maladies and points out the importance of elucidating new compounds and their validation for the interactions of nutraceutical compounds which could be related to MetS.
-
-
-
In vitro Gastrointestinal Models for Prebiotic Carbohydrates: A Critical Review
More LessBackground: In the last decade, various consortia and companies have created standardized digestion protocols and gastrointestinal simulators, such as the protocol proposed by the INFOGEST Consortium, the simulator SHIME, the simulator simgi®, the TIM, etc. Most of them claim to simulate the entire human gastrointestinal tract. However, few results have been reported on the use of these systems with potential prebiotic carbohydrates. Methods: This critical review addresses the existing data on the analysis of prebiotic carbohydrates by different in vitro gastrointestinal simulators, the lack of parameters that could affect the results, and recommendations for their enhancement. Results: According to the reviewed data, there is a lack of a realistic approximation of the small intestinal conditions, mainly because of the absence of hydrolytic conditions, such as the presence of small intestinal brush border carbohydrases that can affect the digestibility of different carbohydrates, including prebiotics. Conclusion: There is a necessity to standardize and enhance the small intestine simulators to study the in vitro digestibility of carbohydrates.
-
-
-
Effects of Polyphenol-Rich Fruit Extracts on Diet-Induced Obesity in Rodents: Systematic Review and Meta-Analysis
Authors: Cíntia R. Ballard, Tais F. Galvão, Cinthia B.B. Cazarin and Mário R. MarósticaBackground: Obesity is a complex condition of high prevalence and cost to the public health system. Recent research has demonstrated the potential of natural products, such as polyphenol-rich fruit extracts, for use in the treatment of obesity. The goal of this systematic review and meta-analysis is to determine the metabolic effects of polyphenol-rich fruit extracts on diet-induced obesity (DIO) in rodents. Methods: We searched MEDLINE, EMBASE, and Web of Science databases to identify preclinical studies that assessed polyphenol-rich fruit extracts compared to placebo on DIO in rodents in December 2018. Two researchers selected the studies, extracted the data, and assessed the quality of studies. Meta-analyses of standardized mean difference (SMD) of outcomes were calculated in Stata 11, and causes of heterogeneity were assessed by meta-regression. Results: We included 14 studies in the systematic review and 13 studies with 21 matched groups in the metaanalysis. Polyphenol-rich fruit extracts reduced the total body weight gain (SMD = -1.48; confidence interval: - 1.95, -1.01), energy intake (SMD = -0.42; -0.67, -0.17), visceral adipose tissue (SMD = -0.96; -1.25, -0.66), triglycerides (SMD = -1.00; -1.39, -0.62), cholesterol (SMD = -1.18, -1.66, -0.69), LDL- c (SMD = -1.15; -1.65, - 0.65), fasting glucose (SMD = -1.05; -1.65, -0.46), and fasting insulin (SMD = -1.40; -1.80, -1.00) when compared to vehicle. Conclusion: Polyphenol-rich fruit extract had positive effects on weight gain, dyslipidaemia, insulin resistance at different doses, and fruit source in male mice.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
