Current Pharmaceutical Design - Volume 25, Issue 20, 2019
Volume 25, Issue 20, 2019
-
-
Treatment of Skin Disorders with Aloe Materials
The skin is the largest organ and functions as a barrier to protect the underlying tissues against the elements and pathogens, while also fulfilling many physiological roles and biochemical functions such as preventing excessive water loss. Skin disorders vary greatly in terms of origin, severity, symptoms and affect persons of all ages. Many plants have been used for medicinal purposes since ancient times including the treatment of skin disorders and diseases. Aloe represents one of the earliest medicinal plant species mentioned in antique scriptures and even in rock art dating back thousands of years. Different Aloe species and materials have been used in the prevention and treatment of skin related disorders. Aloe vera is the most commonly used Aloe species for medicinal purposes. Some of the most prominent skin related applications and disorders that Aloe materials have been investigated for are discussed in this paper, which include cosmetic, radiation, cancer, wound and antimicrobial applications. Both in vitro and in vivo studies are included in the discussions of this paper and comprehensive summaries of all these studies are given in tables in each section. Although some contradictory results were obtained among studies, certain Aloe materials have shown excellent efficacy and exhibited potential for the treatment of skin related disorders and cosmetic applications.
-
-
-
Use of Natural Components Derived from Oil Seed Plants for Treatment of Inflammatory Skin Diseases
Authors: Monika Styrczewska, Magdalena Zuk, Aleksandra Boba, Iwan Zalewski and Anna KulmaThe incidence of inflammatory skin diseases is increasing, so the search for relevant therapeutics is of major concern. Plants are rich in phytochemicals which can alleviate many symptoms. In this review, we concentrate on compounds found in the seeds of widely cultivated plants, regularly used for oil production. The oils from these plants are often used to alleviate the symptoms of inflammatory diseases through synergetic action of unsaturated fatty acids and other phytochemicals most commonly derived from the terpenoid pathway. The knowledge of the chemical composition of oil seeds and the understanding of the mechanisms of action of single components should allow for a more tailored approach for the treatment for many diseases. In many cases, these seeds could serve as an efficient material for the isolation of pure phytochemicals. Here we present the content of phytochemicals, assumed to be responsible for healing properties of plant oils in a widely cultivated oil seed plants and review the proposed mechanism of action for fatty acids, selected mono-, sesqui-, di- and triterpenes, carotenoids, tocopherol and polyphenols.
-
-
-
Ozonated Oils and Cutaneous Wound Healing
Authors: Yunsook Lim, Heaji Lee, Brittany Woodby and Giuseppe ValacchiWound tissue repair is a complex and dynamic process of restoring cellular structures and tissue layers. Improvement in this process is necessary to effectively treat several pathologies characterized by a chronic delayed wound closure, such as in diabetes, and the investigation of new approaches aimed to ameliorate the wound healing process is under continuous evolution. Recently, the usage of vegetable matrices in the form of ozonated oils has been proposed, and several researchers have shown positive effects on wound healing, due to the bactericidal, antiviral, and antifungal properties of these ozonated oils. In the present review, we intend to summarize the actual state of the art of the topical usage of ozonated oil in cutaneous wounds with special emphasis to the importance of the ozonated degree of the oil.
-
-
-
Photodynamic Therapy of Psoriasis Using Photosensitizers of Vegetable Origin
Authors: Marcos L. Bruschi, Jéssica B. da Silva and Hélen C. RossetoPsoriasis is an immune-mediated, chronic and recurrent inflammatory skin disease, prevalent worldwide, and represents an important burden in life quality of patients. The most common clinical variant is termed as psoriasis vulgaris or plaque psoriasis, which with an individualized and carefully monitored therapy can decrease the patients’ morbidity and improving their life quality. The aim is to achieve disease control, minimize the adverse drug effects, and tailor the treatment to individual patient factors. Photodynamic therapy (PDT) is based on local or systemic administration of a non-toxic photosensitizer followed by irradiation with a particular wavelength to generate reactive oxygen species (ROS), mainly highly cytotoxic singlet oxygen (1O2). The generation of these species results in the attack to substrates involved in biological cycles causing necrosis and apoptosis of affected tissues. Photosensitizers are found in natural products and also obtained by partial syntheses from abundant natural starting compounds. They can be isolated at low cost and in large amounts from plants or algae. Therefore, this manuscript reviews the use of molecules from vegetal sources as photosensitizer agents for the PDT of psoriasis. Psoriasis pathogenesis, management and treatment were reviewed. PDT principles, fundamentals and utilization for the treatment of psoriasis were also discussed. Photosensitizers for PDT of psoriasis are also reviewed focusing on those from vegetal sources. Despite the PDT is utilized for the treatment of psoriasis, very little amount of photosensitizers from plant sources are utilized, such as chlorophyll derivatives and hypericin; however, other natural photosensitizers such as curcumin, could also be investigated. They could constitute a very important, safe and cheap alternative for the successful photodynamic treatment of psoriasis.
-
-
-
Depigmentation and Anti-aging Treatment by Natural Molecules
Authors: Abdel N. Zaid and Rowa128;™ Al RamahiNatural molecules are becoming more accepted choices as cosmetic agents, many products in the market today claim to include natural components. Plants include many substances that could be of a value in the whitening of the skin and working as anti-aging agents. A wide range of articles related to natural skin whitening and anti-aging agents have been reviewed. Many plant-derived and natural molecules have shown to affect melanin synthesis by different mechanisms, examples include Arbutin, Ramulus mori extract, Licorice extract, Glabridin, Liquiritin, Kojic acid, Methyl gentisate, Aloesin, Azelaic acid, Vitamin C, Thioctic acid, Soya bean extracts, Niacinamide, α and β-hydroxy acids, Lactic acid, Chamomile extract, and Ellagic acid. Some of the widely used natural anti-aging products as natural antioxidants, collagen, hyaluronic acid, and coenzyme Q can counteract the effects of reactive oxygen species in skin cells and have anti-aging properties on the skin. It was concluded that many natural products including antioxidants can prevent UV-induced skin damage and have whitening and anti-aging effects. It is very important to develop and stabilize appropriate methods for the evaluation of the whitening and anti-aging capacity of natural products and their exact mechanism of action to ensure real efficacy based on evidence-based studies. The attention should be oriented on the formulations and the development of an appropriate vehicle to ensure suitable absorption of these natural products in addition to evaluating the suitable concentration of these molecules required having the desired effects without causing harmful side effects.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
